{"title":"SLAMB&MAI: a comprehensive methodology for SLAM benchmark and map accuracy improvement","authors":"Shengshu Liu, Erhui Sun, Xin Dong","doi":"10.1017/s0263574724000079","DOIUrl":null,"url":null,"abstract":"<p>SLAM Benchmark plays a pivotal role in the field by providing a common ground for performance evaluation. In this paper, a novel methodology of simultaneous localization and mapping benchmark and map accuracy improvement (SLAMB&MAI) is introduced. It can objectively evaluate errors of localization and mapping, and further improve map accuracy by utilizing evaluation results as feedback. The proposed benchmark transforms all elements into a global frame and measures the errors between them. The comprehensiveness consists in the benchmark of both localization and mapping, and the objectivity consists in the consideration of the correlation between localization and mapping by the preservation of the original pose relations between all reference frames. The map accuracy improvement is realized by first obtaining the optimization that minimizes the errors between the estimated trajectory and ground truth trajectory and then applying it to the estimated map. The experimental results showed that the map accuracy can be improved by an average of 15%. The optimization that yields minimal localization errors is obtained by the proposed Centre Point Registration-Iterative Closest Point (CPR-ICP). This proposed Iterative Closest Point (ICP) variant pre-aligns two point clouds by their centroids and least square planes and then uses traditional ICP to minimize the error between them. The experimental results showed that CPR-ICP outperformed traditional ICP, especially in cases involving large-scale environments. To the extent of our knowledge, this is the first work that can not only objectively benchmark both localization and mapping but also revise the estimated map and increase its accuracy, which provides insights into the acquisition of ground truth map and robot navigation.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"71 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000079","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
SLAM Benchmark plays a pivotal role in the field by providing a common ground for performance evaluation. In this paper, a novel methodology of simultaneous localization and mapping benchmark and map accuracy improvement (SLAMB&MAI) is introduced. It can objectively evaluate errors of localization and mapping, and further improve map accuracy by utilizing evaluation results as feedback. The proposed benchmark transforms all elements into a global frame and measures the errors between them. The comprehensiveness consists in the benchmark of both localization and mapping, and the objectivity consists in the consideration of the correlation between localization and mapping by the preservation of the original pose relations between all reference frames. The map accuracy improvement is realized by first obtaining the optimization that minimizes the errors between the estimated trajectory and ground truth trajectory and then applying it to the estimated map. The experimental results showed that the map accuracy can be improved by an average of 15%. The optimization that yields minimal localization errors is obtained by the proposed Centre Point Registration-Iterative Closest Point (CPR-ICP). This proposed Iterative Closest Point (ICP) variant pre-aligns two point clouds by their centroids and least square planes and then uses traditional ICP to minimize the error between them. The experimental results showed that CPR-ICP outperformed traditional ICP, especially in cases involving large-scale environments. To the extent of our knowledge, this is the first work that can not only objectively benchmark both localization and mapping but also revise the estimated map and increase its accuracy, which provides insights into the acquisition of ground truth map and robot navigation.
期刊介绍:
Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.