{"title":"Modeling, simulations and experiments with generally routed cable-driven continuum robots and their application to three-fingered grippers","authors":"Soumya Kanti Mahapatra, Ashitava Ghosal","doi":"10.1017/s0263574724000651","DOIUrl":null,"url":null,"abstract":"This paper deals with generally routed, pre-bent cable-driven continuum robots (CCR). A CCR consists of a flexible backbone to which multiple disks are attached. Cables are passed through holes in the disk, and when pulled, the flexible backbone and the CCR can attain different shapes based on their routing and backbone configuration. An optimization-based approach, using minimization of strain energy, is shown to give good results for the pose and motion of the CCR and to determine contact with external objects. The pose, motion, and the contact obtained from the model are shown to match very well with experimental results obtained from a 3D-printed CCR. An algorithm is proposed to generate the pre-bent backbone for a CCR which on actuation can attain the desired shape. Using the algorithm, three 3D-printed CCRs with pre-bent backbones are fabricated and these are used to demonstrate a compliant gripper that can grip a spherical object similar to that done by tentacles, and another three-fingered gripper with straight backbone CCRs is used to orient a square object gripped at the end.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"35 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000651","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with generally routed, pre-bent cable-driven continuum robots (CCR). A CCR consists of a flexible backbone to which multiple disks are attached. Cables are passed through holes in the disk, and when pulled, the flexible backbone and the CCR can attain different shapes based on their routing and backbone configuration. An optimization-based approach, using minimization of strain energy, is shown to give good results for the pose and motion of the CCR and to determine contact with external objects. The pose, motion, and the contact obtained from the model are shown to match very well with experimental results obtained from a 3D-printed CCR. An algorithm is proposed to generate the pre-bent backbone for a CCR which on actuation can attain the desired shape. Using the algorithm, three 3D-printed CCRs with pre-bent backbones are fabricated and these are used to demonstrate a compliant gripper that can grip a spherical object similar to that done by tentacles, and another three-fingered gripper with straight backbone CCRs is used to orient a square object gripped at the end.
期刊介绍:
Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.