Ziqian Wang , Kenichi Nakano , Jikai Sun , Eri Ito , Hiroshi Kawase
{"title":"Subsurface S-wave velocity structure inversion using particle swarm optimization based on horizontal site response extracted using generalized inversion technique","authors":"Ziqian Wang , Kenichi Nakano , Jikai Sun , Eri Ito , Hiroshi Kawase","doi":"10.1016/j.soildyn.2024.109093","DOIUrl":"10.1016/j.soildyn.2024.109093","url":null,"abstract":"<div><div>A new methodology, including a mature algorithm with adjustments and a new target for the subsurface sedimentary inversion problem was introduced. This study adopted the particle swarm optimization (PSO) algorithm as a global optimization algorithm. PSO incorporates the patterns embedded in natural bird foraging behaviors to invert the subsurface S-wave velocity structure. Using the concept of particle velocity, PSO involves particle individual inertia, individual experience, and social experience of the swarm, pursuing the global optimum solution in a multidimensional abstract space. The inversion target was the horizontal site amplification factor (HSAF), which was extracted using the generalized inversion technique for the observed strong ground motions. HSAF is an appropriate target in the S-wave velocity structure inversion problem as it directly represents the site response to the incident S-wave at the seismological bedrock. We validated the convergence ability of the PSO and applied it to three field earthquake observation stations. From the perspective of the misfit between the target and estimation velocity profile, improvements exceeding 95 % and 70 % can be confirmed in the validation case and practical applications, respectively. The use of HSAF as the target and PSO as the algorithm is currently limited but is demonstrably effective. This study introduces a methodology that has significant potential for solving velocity structure inversion problems at subsurface levels.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109093"},"PeriodicalIF":4.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142702215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Shen , Xiaohua Bao , Junhong Li , Xiangsheng Chen , Hongzhi Cui
{"title":"Study on the mechanism of EPWP dissipation at the joints of shield tunnel in liquefiable strata during seismic events","authors":"Jun Shen , Xiaohua Bao , Junhong Li , Xiangsheng Chen , Hongzhi Cui","doi":"10.1016/j.soildyn.2024.109089","DOIUrl":"10.1016/j.soildyn.2024.109089","url":null,"abstract":"<div><div>The segment joints of a shield tunnel are susceptible to deformation and leakage during seismic events. In liquefiable strata, opened joints can form seepage channels, which accelerate the dissipation of pore pressure. This study explores the interaction mechanism between tunnel structure with significant segment joints deformation and liquefiable strata under earthquakes, considering the multi-joint characteristics of a shield tunnel. First, shaking table tests were conducted to examine the dynamic characteristics of a tunnel structure with multiple joints in liquefiable strata. Based on the measured data from these tests, an optimal marginal distribution was selected from four different distribution types based on the measured values of the test results. Subsequently, a two-dimensional probability distribution model of dynamic response factors was established using Copula theory to analyse the relationship between excess pore water pressure (<em>EPWP</em>) dissipation and tunnel radial deformation. The correlation between <em>EPWP</em> dissipation and tunnel radial deformation with joints opening in the liquefiable strata was clarified. The results reveal significant differences in <em>EPWP</em> dissipation across different positions of the tunnel. The Gaussian Copula method effectively fits the <em>EPWP</em> distribution and tunnel radial deformation, indicating a positive correlation between <em>EPWP</em> dissipation and joints deformation. The formation of new seepage channels at the tunnel joints exacerbates EPWP dissipation. The developed probability distribution model provides a new approach for studying the dynamic response between tunnel and liquefiable soil.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109089"},"PeriodicalIF":4.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142702218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative benefits of geocells in controlling liquefaction in sands","authors":"Prerana Krishnaraj, Gali Madhavi Latha","doi":"10.1016/j.soildyn.2024.109098","DOIUrl":"10.1016/j.soildyn.2024.109098","url":null,"abstract":"<div><div>Geocells have become an integral part of many geosystems like road and railway embankments, retaining walls and foundations, attributed to their multiple merits in terms of stability and strength, but their contributions towards liquefaction mitigation are unknown. The present study aims to understand the role of geocell reinforcement on the liquefaction and post-liquefaction shear response of saturated sands through monotonic and cyclic triaxial tests. Low-strength geocells of required physical and mechanical properties were fabricated through ultrasonic welding of 3D printed polypropylene (PP) sheets. The liquefaction benefits of including a single geocell in sand were quantified in terms of the reduction in pore water pressure, retardation in stiffness degradation and delay in the retardation of effective stress. In general, the inclusion of geocells delayed liquefaction, with higher beneficial effects at lower initial confining pressure, higher cyclic strain amplitude and higher cyclic loading frequency. The maximum benefit measured in terms of percentage rise in the number of cycles needed to liquefy was calculated to be about 230 %. Geocell reinforcement also helped in the quick regain of post-liquefaction shear strength and stiffness.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109098"},"PeriodicalIF":4.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142702219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of the time-frequency non-stationary stochastic near-fault fling-step ground motion based on time-frequency non-stationary ground motion model and stochastic pulse model","authors":"Qingfei Luo, Jingru An, Zhengzheng Wang","doi":"10.1016/j.soildyn.2024.109094","DOIUrl":"10.1016/j.soildyn.2024.109094","url":null,"abstract":"<div><div>Near-fault fling-step ground motions (NFFS-GMs) are known to cause significant permanent ground displacements, resulting in greater structural damage for long-period flexible structures compared to far-field ground motions. Furthermore, even during the same seismic event, the pulse parameters—such as permanent ground displacements <span><math><mrow><msub><mi>D</mi><mrow><mi>s</mi><mi>i</mi><mi>t</mi><mi>e</mi></mrow></msub></mrow></math></span> and pulse period <span><math><mrow><msub><mi>T</mi><mi>p</mi></msub></mrow></math></span>—can vary considerably. Despite their importance, research on stochastic NFFS-GMs remains limited. To address this gap, this paper proposes a method for synthesizing the time-frequency non-stationary stochastic near-fault fling-step ground motion for a specific seismic scenario. Firstly, we employ the discrete wavelet transform (DWT) method, utilizing five mother wavelet functions (MWFs) to analyze 210 Chi-Chi ground motions. This analysis identifies 41 valid NFFS-GMs. The effectiveness of the identification method is validated by comparing the displacement time histories of the original ground motion. Pulse parameters are subsequently derived using the fling-step (FS) pulse model proposed by Abrahamson, in conjunction with the nonlinear least-squares method. A regression model correlating pulse parameters with the seismological parameter of the fault distance <em>R</em> is then developed through Pearson correlation analysis and the nonlinear least-squares method. The residuals of the regression model <span><math><mrow><msub><mi>σ</mi><mrow><mi>ln</mi><mspace></mspace><msub><mi>D</mi><mrow><mi>s</mi><mi>i</mi><mi>t</mi><mi>e</mi></mrow></msub></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mi>T</mi><mi>p</mi></msub></mrow></math></span> are treated as random variables, and their probability distributions are determined. After that, a new stochastic pulse model is introduced to simulate low-frequency ground motions, while a time-frequency non-stationary model is used to simulate high-frequency ground motions. These components are synthesized in the frequency domain to obtain the time-frequency non-stationary stochastic near-fault fling-step ground motion (TFNS-SNFFS-GM) via inverse Fourier transform. Finally, the effectiveness of the proposed method is confirmed by comparing the response spectrum of the synthesized ground motion with that of actual NFFS-GMs.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109094"},"PeriodicalIF":4.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongwei Gao , Xiaobing Yang , Jinfang Zhang , Hongyuan Tang , Yue Du , Shiyu Zhao
{"title":"Modal modification based analysis of seismic performance of the Jiufeng Temple Ancient Masonry Pagoda","authors":"Zhongwei Gao , Xiaobing Yang , Jinfang Zhang , Hongyuan Tang , Yue Du , Shiyu Zhao","doi":"10.1016/j.soildyn.2024.109087","DOIUrl":"10.1016/j.soildyn.2024.109087","url":null,"abstract":"<div><div>Based on detailed data collected on-site, including structural construction, cross-sectional dimensions, and material properties, this paper establishes a refined three-dimensional solid initial numerical model (INM) of the Jiufeng Temple Ancient Masonry Pagoda using the ABAQUS finite element software. On the basis of the measured modal characteristics (frequency, vibration mode, and damping ratio) of the ancient masonry pagoda, a modified numerical model (MNM) was obtained by adjusting the key parameters (damping ratio, Rayleigh damping coefficients, elastic modulus, and material density) of the initial numerical model. Based on the modified numerical model, five actual strong earthquake records were input to calculate the seismic response of the ancient masonry pagoda. The seismic failure mechanism of the ancient masonry pagoda, as well as the distribution characteristics of the principal tensile stress and seismic weak-layers were analyzed. The results indicate that the stiffness and mass distribution of the ancient masonry pagoda are consistent along its height, and the deformation at the top of the ancient masonry pagoda is significant under seismic action. The results obtained from the initial numerical model are more conservative, with the maximum storey drift being 19 %, 40 %, and 27 % larger than those of the modified numerical model under minor earthquakes (with a 63 % probability of exceedance in 50 years, also called frequently occurring earthquakes), moderate earthquakes (with a 10 % probability of exceedance in 50 years), and major earthquakes (with a 2 % probability of exceedance in 50 years, also called rarely occurring earthquakes), respectively. Under the action of major earthquakes, the upper portion of the Jiufeng Temple ancient masonry Pagoda, particularly above the 9th floor, may suffer severe damage. The 10th, 11th, and 12th floors are identified as the weak-layers of the ancient masonry pagoda, and the weak-layers determination from the modified numerical model are consistent with the results of standard calculations. The method proposed in this paper can provide technical support for the seismic protection of ancient masonry pagodas.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109087"},"PeriodicalIF":4.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiyu Gong , Guoliang Dai , Xinsheng Chen , Haoran Ouyang , Tao Hu , Zhiwei Chen
{"title":"Vertical bearing behavior and pile group effect for cemented-soil composite pile groups based on on-site experiments","authors":"Zhiyu Gong , Guoliang Dai , Xinsheng Chen , Haoran Ouyang , Tao Hu , Zhiwei Chen","doi":"10.1016/j.soildyn.2024.109090","DOIUrl":"10.1016/j.soildyn.2024.109090","url":null,"abstract":"<div><div>Bearing characteristics and interactions of a pile group are complex. and there is almost no on-site full-scale test data for cemented-soil composite pile group. In this research, vertical static load tests were conducted on two isolated pile, two-pile group and six-pile group for long-core SDCM pile. The bearing behavior of long-core SDCM pile and the interaction between pile groups have been studied. The results indicate that the long-core SDCM single pile is a typical friction type pile, and cemented soil provides most of the lateral friction resistance for the bearing capacity. In pile groups, pile spacing is the main factor affecting the pile group effect. The model calculation results based on the equivalent pier method are verified using on-site test data and the key parameters in the pile group for long-core SDCM pile including pile spacing <em>S</em><sub>ij</sub>, cemented soil Elastic modulus <em>E</em><sub>c</sub> and PHC pipe pile Elastic modulus <em>E</em><sub>p</sub> are analyzed using a mathematical model. Parameter analysis results indicate that the pile group interaction for long-core SDCM pile is mainly reflected in settlement. Group effect is inapparent at pile spacing greater than 4 <em>D</em>. The appropriate value of <em>E</em><sub>c</sub> and <em>E</em><sub>p</sub> are taken in the range of 1.2–1.6 GPa and 30–40 GPa.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109090"},"PeriodicalIF":4.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaofei Wang , Yang Wei , Binrong Zhu , Si Chen , Jiaqing Wang , Silu Huang
{"title":"A novel biomass bamboo coarse aggregate concrete: Cyclic axial compression behaviour and modelling","authors":"Gaofei Wang , Yang Wei , Binrong Zhu , Si Chen , Jiaqing Wang , Silu Huang","doi":"10.1016/j.soildyn.2024.109096","DOIUrl":"10.1016/j.soildyn.2024.109096","url":null,"abstract":"<div><div>This study pioneers in exploring the cyclic compressive behavior of bamboo coarse aggregate (BCA) concrete (BAC). BAC columns with BCA replacement rates ranging from 0 % to 45 % were tested, using either unmodified or epoxy mortar-modified methods. The evaluation focused on their cyclic compressive stress-strain relationship, failure modes, and the effects of BCA replacement rates and modification methods on plastic strain, stiffness and stress degradation, terminal strain on the reloading curve, and hysteretic energy dissipation. Research indicates that adding BCAs reduces concrete's peak stress but enhances its other cyclic mechanical behaviors, including improved ductility, stronger hysteretic energy dissipation, and lower degrees of performance degradation. Plastic strain in BAC is generally lower than in normal aggregate concrete (NAC) at the same unloading point strain, with BCA replacement rate and modification methods having negligible effects on plastic strain. Stiffness degradation decelerates as BCA replacement rate increases, and stress degradation lacks a clear trend, though it is more pronounced in unmodified BAC. Higher BCAs replacement rates lead to a slower decline in hysteretic strain energy over cycles, with hysteretic strain energy during decline surpassing that of NAC. Finally, the study establishes comprehensive cyclic compression stress-strain equations, providing a theoretical foundation and practical guidance for future BAC research.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109096"},"PeriodicalIF":4.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142702216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chaewoon Jang , Beomjoo Yang , Won-Taek Hong , Jongwon Jung
{"title":"Evaluation of the static and dynamic behavior characteristics of biopolymer-treated soil at varying moisture contents","authors":"Chaewoon Jang , Beomjoo Yang , Won-Taek Hong , Jongwon Jung","doi":"10.1016/j.soildyn.2024.109080","DOIUrl":"10.1016/j.soildyn.2024.109080","url":null,"abstract":"<div><div>Cement is widely used for ground strengthening; however, such applications have several adverse environmental effects, including increased carbon dioxide emissions and groundwater contamination. With a global focus on eco-friendliness, there is growing interest in the development of alternative ground strengthening materials. Biopolymers, which can be extracted from nature, are particularly suitable materials for this purpose owing to their ability to enhance the soil strength. Consequently, research based on ground strengthening using biopolymers is ongoing. However, few studies have been conducted on the water resistance properties and liquefaction resistance strengths of biopolymer-treated soils. Therefore, in this study, the strength changes and water resistance characteristics of soils treated with agar gum, gellan gum, and xanthan gum were evaluated at different moisture contents by means of unconfined compression tests. Furthermore, the liquefaction resistance strengths of the saturated biopolymer-treated soils were analyzed using cyclic triaxial tests. The results confirmed that the compressive strengths of the agar-gum-, gellan-gum-, and xanthan-gum-treated soils were affected by the final moisture content, regardless of the curing time. Moreover, the compressive strength of the submerged cured biopolymer-treated soils and the liquefaction resistance were compared and analyzed, demonstrating that agar-gum-, and gellan-gum-treated soils exhibit water resistance.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109080"},"PeriodicalIF":4.2,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xing Gao , Jinqing Jia , Xiaohua Bao , Guoxiong Mei , Lihua Zhang , Bingxiong Tu
{"title":"Investigation of dynamic responses of slopes in various anchor cable failure modes","authors":"Xing Gao , Jinqing Jia , Xiaohua Bao , Guoxiong Mei , Lihua Zhang , Bingxiong Tu","doi":"10.1016/j.soildyn.2024.109077","DOIUrl":"10.1016/j.soildyn.2024.109077","url":null,"abstract":"<div><div>To clarify the effect of various anchor cable failure modes on the dynamic responses of slopes, the FLAC3D software was redeveloped. Constitutive models of cable elements in different anchor cable failure modes were proposed and embedded into the main program of slope dynamic calculation. The axial force, acceleration, and displacement responses in different anchor cable failure modes were compared and analyzed. The effects of seismic parameters on the anchor cable failure modes were also investigated. A matching relationship between the ultimate load-bearing capacities of the anchorage, anchoring interface, and tendon was proposed. The results reveal that the seismic intensity causing anchor cable damage in anchorage failure mode (AFM) and grouting body failure mode is 0.2g–0.3 g lower than that in tendon failure mode. At the moment of failure, the stress released by the anchor cable in AFM is the highest, with the most evident instantaneous slope acceleration fluctuation. In the collaborative seismic design of the anchorage, anchoring section, and anchor tendon, the ultimate load-bearing capacities of the anchorage and anchoring interface should be increased by 1.8 times to match the tensile bearing capacity of the tendon. This study provides a reference for the seismic anchorage design of slopes and offers suggestions for selecting seismic design parameters for anchor cables.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109077"},"PeriodicalIF":4.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Knowledge structure and research progress in earthquake-induced liquefaction assessment from 2000 to 2023: A scientometric analysis incorporating domain knowledge","authors":"Hongning Qi , Jian Zhou , Kang Peng , Manoj Khandelwal","doi":"10.1016/j.soildyn.2024.109075","DOIUrl":"10.1016/j.soildyn.2024.109075","url":null,"abstract":"<div><div>Earthquake-induced liquefaction is a severe geological hazard that poses substantial risks to human safety making its evaluation critical. Despite prolonged discussions in academia and engineering, contemporary literature on earthquake-induced liquefaction assessment primarily focuses on specific methodologies, lacking a comprehensive overviews. This study systematically analyzed 824 research publications on earthquake-induced liquefaction assessment spanning from 2000 to 2023 within the Web of Science Core Collection (WoSCC) utilizing bibliometric approaches, including Citespace and VOSviewer. The primary objective was to meticulously analyze and explore the earthquake-induced liquefaction assessment field through bibliometric methods. The analysis reveals a steady increase in research output, transitioning from foundational theoretical development to advanced methodological innovations. Furthermore, a complete understanding of the research dynamics in this domain has been established by analyzing the publication trends, collaborative networks across journals, countries, institutions, and authors, and the evolution of significant research themes. Additionally, various techniques employed for earthquake-induced liquefaction assessment, including in-situ experiments, earthquake energy methodologies, numerical modeling approaches, and artificial intelligence methods, were explored, elucidating their characteristics and limitations. Finally, this study synthesizes the advancements and trends in earthquake-induced liquefaction assessment over recent decades, while also considering future research directions. It offers valuable insights into the methodologies for assessing earthquake-induced liquefaction and outlines potential avenues for future exploration.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109075"},"PeriodicalIF":4.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}