{"title":"Input Energy Reduction-Oriented Control and Analytical Design of Inerter-Enabled Isolators for Large-Span Structures","authors":"Jianfei Kang, Zhipeng Zhao, Yixian Li, Liyu Xie, Songtao Xue","doi":"10.1155/2024/7104844","DOIUrl":"https://doi.org/10.1155/2024/7104844","url":null,"abstract":"<div>\u0000 <p>Seismic isolation technologies for large-span structures have rapidly developed alongside the popularization of the seismic resilience concept. To produce a high-efficiency isolation technology with lower energy dissipation demands, this paper proposes a novel inerter-enabled isolator (IeI) and a tailored input energy reduction-oriented design method. The inerter-based damper within the IeI is developed by combining the dashpot, tuning spring, and two inerters to facilitate the optimization of inerter distribution. Assuming the large-span structure remains linear, the overall seismic input energy of the large-span structure with IeIs and its allocation in the superstructure and additional damping are quantified using stochastic energy analysis. The advantages of the IeI over the conventional linear viscous damper (LVD) isolator are elucidated through dimensionless parametric analysis. Based on the results of parametric analysis, an input energy reduction-oriented design method is proposed for the IeI, along with an easy-to-follow diagram that helps with preliminary design in practical applications. The effectiveness of the IeI and the proposed design method is validated through a design case study of a benchmark large-span structure. The results demonstrate that the IeI reduces the seismic response of large-span structures by simultaneously employing the input energy reduction effect of grounded inerters with the damping-enhancing effect of inerter-based dampers. The proposed design method effectively balances the performance of controlling the large-span structure and the isolator displacement. Under consistent control performance and isolator displacement constraints, the IeI requires much less damping coefficient and energy dissipation capacity than the conventional LVD isolator. Moreover, leveraging the damping enhancement and input energy reduction effects, the IeI achieves comparable control performance to the conventional LVD isolator, even under stricter isolator displacement constraints.</p>\u0000 </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7104844","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"When Transfer Learning Meets Dictionary Learning: A New Hybrid Method for Fast and Automatic Detection of Cracks on Concrete Surfaces","authors":"Si-Yi Chen, You-Wu Wang, Yi-Qing Ni, Yang Zhang","doi":"10.1155/2024/3185640","DOIUrl":"https://doi.org/10.1155/2024/3185640","url":null,"abstract":"<div>\u0000 <p>Cracks in civil structures are important signs of structural degradation and may indicate the inception of catastrophic failure. However, most of studies that have employed deep learning models for automatic crack detection are limited to high computational demand and require a large amount of labeled data. Long training time is not friendly to model update, and large amount of training data is usually unavailable in real applications. To bridge this gap, the innovation of this study lies in developing a hybrid method that comprises transfer learning (TL) and low-rank dictionary learning (LRDL) for fast crack detection on concrete surfaces. Benefiting from the availability of preextracted features in TL and a limited number of parameters in LRDL, the training time can be significantly minimized without GPU acceleration. Experimental results showed that the time for training a dictionary only takes 25.33 s. Moreover, this new hybrid method reduces the demand for labeled data during training. It achieved an accuracy of 99.68% with only 20% labeled data. Three large-scale images captured under varying conditions (e.g., uneven lighting conditions and very thin cracks) were further used to assess the crack detection performance. These advantages help to implement the proposed TL-LRDL method on resource-limited computers, such as battery-powered UAVs, UGVs, and scarce processing capability of AR headsets.</p>\u0000 </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3185640","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Vibration-Based Quasi-Real-Time Cable Force Identification Method for Cable Replacement Monitoring","authors":"Beiyang Zhang, Yixiao Fu, Hua Liu, Yanjie Zhu, Wen Xiong, Runping Ma","doi":"10.1155/2024/2394178","DOIUrl":"https://doi.org/10.1155/2024/2394178","url":null,"abstract":"<div>\u0000 <p>Tension force is a crucial indicator in reflecting the stressing state of old cables during the cable replacement process. Even though the vibration-based method is popular in the cable force identification due to its simple calculation process and low cost, the frequency is hard to be recognized with both high time and frequency resolutions attributed to the Heisenberg uncertainty principle, which hinders its application in identifying time-varying cable force. In this paper, a novel quasi-real-time cable force identification method is presented based on a quasi-ideal time-frequency analysis method called multi-synchrosqueezing transform (MSST), by which the cable frequencies can be identified with appreciable time-frequency resolution. To achieve the identification in a real-time manner, an Automatic Frequency Order Identification (AFOI) algorithm is developed to recognize the frequency order automatically depending on the MSST result, in which the interference of fake modes and omitted modes to the identification of the actual frequency order is eliminated to a large extent. The performance of the proposed AFOI algorithm and the quasi-real-time cable force identification method is evaluated on a practical cable replacement engineering case. Results show that the correct orders of the multiple frequencies received from MSST can be identified along the time domain, which demonstrates the effectiveness of the proposed method. The variation of the tension force of not only the replaced cable but also its neighbor cables is estimated with desired time-frequency resolution, which promotes the safety state assessment of a cable in a real-time manner during the replacement process.</p>\u0000 </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2394178","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feng Xiao, Yuxue Mao, Huimin Sun, Gang S. Chen, Geng Tian
{"title":"Stiffness Separation Method for Reducing Calculation Time of Truss Structure Damage Identification","authors":"Feng Xiao, Yuxue Mao, Huimin Sun, Gang S. Chen, Geng Tian","doi":"10.1155/2024/5171542","DOIUrl":"https://doi.org/10.1155/2024/5171542","url":null,"abstract":"<div>\u0000 <p>The inversion of a high-dimensional stiffness matrix with unknown parameters is time-consuming. In this study, a stiffness separation method is used to solve the large-scale matrix inversion problem. Substructures are isolated from the overall structure by mapping the substructure-related matrix, and the solvable equilibrium equations for the substructures can be established. This method divides the entire stiffness matrix into the sub-stiffness matrices, and the size of the matrix is reduced, thus greatly reducing the stiffness matrix inversion workload. Meanwhile, this paper refines the formulation of the stiffness separation method and presents the compatibility of forces and displacements with the stiffness matrix. A space-truss structure with different damage cases is studied to validate the effectiveness of the proposed method. The division of the structure into single and multi-region scenarios is considered, and the effect of the size and number of substructures on the damage identification is analyzed. These results demonstrate that the stiffness separation method can reduce the computational effort required for analyzing large-scale truss structures.</p>\u0000 </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5171542","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Ye, Jian-Ping Yang, Wei-Zhong Chen, Yu-Xuan Wang
{"title":"Analysis of the Irreversible Strain of an Underwater Shield Tunnel Based on SHM Data","authors":"Wei Ye, Jian-Ping Yang, Wei-Zhong Chen, Yu-Xuan Wang","doi":"10.1155/2024/4786222","DOIUrl":"https://doi.org/10.1155/2024/4786222","url":null,"abstract":"<div>\u0000 <p>Deterioration evaluation of tunnel structures is the prerequisite for the tunnel’s daily traffic safety management, maintenance planning, and service life prediction. Previous studies primarily rely on material degradation tests and theoretical analysis, often lacking the support of long-term field monitoring data. This study aims to address this gap by implementing a structural health monitoring system including 48 strain gauges installed in an underwater shield tunnel in 2013. More than 8 years of data were obtained, and an irreversible strain-based evaluation framework was proposed. This framework operates in two steps: first, it separates the irreversible strain and its damage-induced part from the total strain. Second, it assesses the segments’ damage status using the hypothesis test method. Results show that the mean irreversible strain of 41 monitoring points is 43 <i>μ</i><i>ε</i> over 8 years, agreeing well with the predictions based on the concrete shrinkage and creep theory. It is also found that the irreversible strain and elastic strain at different monitoring points vary significantly but they are highly correlated. Quantitative results from the hypothesis test show that the irreversible strain is induced mainly by the concrete shrinkage and creep, rather than segment damage. This study provides a method for early-stage performance diagnosis of the tunnel segment during its service life.</p>\u0000 </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4786222","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design, Manufacturing, and Testing of a Non-Preload Variable Friction Damper for Seismic Application of Buildings","authors":"Wei Liu, Sihua Kong, Guifeng Zhao, Yuhong Ma, Zhenyu Yang, Qingsong Guan, Jiachuan Chen","doi":"10.1155/2024/9573096","DOIUrl":"https://doi.org/10.1155/2024/9573096","url":null,"abstract":"<div>\u0000 <p>Friction dampers are widely used due to their simple structure, remarkable energy dissipation capacity, and frequency independence. However, existing friction dampers are prone to relaxing the preload force during long-term service, which can lead to cold bonding or cold solidification. To overcome this critical shortcoming, a novel non-preload variable friction damper (NVFD) was firstly proposed. The construction of the proposed NVFD is provided in detail. Furthermore, restoring the force model through the amplification factors of friction force and inertial mass was derived based on the principle of the proposed NVFD. Then, pseudo-static tests with various parameters were conducted. Finally, a single-degree-of-freedom (SDOF) structure was employed to compare the effectiveness of this paper’s new NVFD with a conventional friction damper (FD) under various earthquake levels. The results show that non-preload characteristics avoided the problems of large preloads by traditional friction dampers; thus, the NVFD had stable and reliable variable friction performance, which can effectively adapt to different hazard levels.</p>\u0000 </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9573096","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-Tzu Huang, Daniel Yen-Hsun Chou, Chung-Che Chou, Chin-Hsiung Loh
{"title":"Data-Driven Structural Health Monitoring on Shaking Table Tests of a 3-Story Steel Building with Sliding Slabs","authors":"Yu-Tzu Huang, Daniel Yen-Hsun Chou, Chung-Che Chou, Chin-Hsiung Loh","doi":"10.1155/2024/3412305","DOIUrl":"https://doi.org/10.1155/2024/3412305","url":null,"abstract":"<div>\u0000 <p>Data-driven structural health monitoring (SHM) is an approach which relies on the information contained in the data and through signal analysis techniques captures the features, variations, and uncertainties that data contain. This paper presents the response of shaking table tests of a full-scale, 3-story building with sliding slabs connected by horizontal buckling-restrained braces for energy dissipation. First, the global dynamic characteristics of the structure were identified from a series of the building response data under different intensity level of base excitations. The variation of the identified modal parameters, such as the mode frequencies and modal shapes, was discovered. The influence of sliding slabs on the dynamic characteristics of the frame was also investigated through the measured response and the equation of motion with six degree of freedom systems. Comparison on the achieved interstory stiffness due to the implementation of sliding slabs and the fixed (locked up) slab was examined. The mechanism and dynamic characteristics of sliding slabs, including energy dissipation of the friction force, BRB hysteresis behavior, and unintended damping force during strong base excitation were analyzed directly using the ARX/recursive model. The extracted unintended damping force performed like a friction hysteretic response, which needs to be considered for frame modeling in shaking table tests. The findings through the data analysis have clarified the important aspects of sliding slabs and demonstrated the benefits and applicability of sliding slabs on reducing the frame response.</p>\u0000 </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3412305","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep-Learning-Based Crack Identification and Quantification for Wooden Components in Ancient Chinese Timber Structures","authors":"Lipeng Zhang, Qifang Xie, Hanlong Wang, Jiang Han, Yajie Wu","doi":"10.1155/2024/9999255","DOIUrl":"https://doi.org/10.1155/2024/9999255","url":null,"abstract":"<div>\u0000 <p>Cracks exist in the majority of components of ancient Chinese timber structures and have led to serious mechanical property degradation problems, threatening the safety of the whole structures and making the cracks’ detection for wooden components a necessity. With the rapid development of intelligent protection technology of cultural buildings, it is important to establish a scientific identification and quantification method for cracks in wooden components to replace traditional manual detection techniques. Deep learning is precisely such an advanced technology. In this study, images of cracked wooden components were first collected from the Yingxian wooden pagoda and the crack characteristics were analyzed. A dataset for crack segmentation was established using a total of 501 images of cracked wooden components, including a training dataset of 450 images and a validation dataset of 51 images. Based on the mathematical principles of deep learning and the fully convolutional neural networks (FCNN), a deep fully convolutional neural network (d-FCNN) model was constructed based on encoding and decoding methodology. Four model indicators, pixel accuracy (PA), average pixel accuracy (mPA), mean intersection over union (mIoU), and F1-score were analyzed to train the model and determine the optimal model parameters, including learning rate, batch size, and epoch. It concluded that the optimal initial learning rate takes the value of 10<sup>−4</sup>, batch size of 6, and epoch of 100, achieving the average accuracy of 78.8%. Further, based on the pixel’s accumulation principle, a quantitative calculation method for crack length and maximum width was proposed. Two cracked wooden columns were prepared, and crack image identification and quantification experiments were conducted to verify the correctness of the constructed d-FCNN model and the proposed crack quantification method. The results show that the model is suitable for crack intelligence detection, identification, and quantification of cracked wooden components.</p>\u0000 </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9999255","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pietro Ballarin, Marco Macchi, Irene Roda, Giuseppe Sala, Andrea Baldi, Alessandro Airoldi
{"title":"Economic Impact Assessment of Structural Health Monitoring Systems on Helicopter Blade Beginning of Life","authors":"Pietro Ballarin, Marco Macchi, Irene Roda, Giuseppe Sala, Andrea Baldi, Alessandro Airoldi","doi":"10.1155/2024/2865576","DOIUrl":"https://doi.org/10.1155/2024/2865576","url":null,"abstract":"<div>\u0000 <p>The economic impact of Structural Health Monitoring Systems based on optical fibre sensors is assessed in the development of composite helicopter rotor blades. Hence, the focus of this analysis is on the helicopter’s Beginning Of Life stage. Two applications of the Structural Health Monitoring System are considered in the development of composite blades: curing cycle development and accomplishment of laboratory and flight certification tests. Optical fibre sensors measure the temperature field during the curing cycle and strain field during the laboratory tests and allow load identification during the load survey activity. It was found that Structural Health Monitoring Systems can potentially lead to economic benefits during the development of the blade provide that a reduction in the number of curing cycles and number of blades tested is achieved as a consequence of the improvement of the temperature and strain field quality. Moreover, an economic benefit could be achieved during the load survey activity, needed to complete the certification of the composite blade, avoiding the periodical maintenance of the applied strain gauges acquiring the strains during the flight.</p>\u0000 </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2865576","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Digital Image Correlation for Assessment of Bridges’ Technical State and Remaining Resource","authors":"Nadiia Kopiika, Yaroslav Blikharskyy","doi":"10.1155/2024/1763285","DOIUrl":"https://doi.org/10.1155/2024/1763285","url":null,"abstract":"<div>\u0000 <p>Bridges enable communications and transportation of goods nationally and internationally, underpinning economic and social activities, and thus they are pylons of our prosperity and mobility. Bridges worldwide are constantly subjected to physical wear, ageing, deterioration, hazards, environmental influences, and increased loading. Loss of performance and functionality of bridge structures would have a crucial impact on overall infrastructural resilience and would cause significant negative economic and social consequences. Monitoring their behaviour for different loading conditions relies on accurate estimations of the stress-strain state of various critical components and remaining capacities. These activities are of high importance for better planning and lifespan prolongation, that is, the extension of their service life and prevention of unforeseen collapses, in line with sustainability principles of well-informed maintenance. In many cases, access to the structure is limited or even impossible, which causes the need for the deployment of remote and contactless methods. One such innovative technique, which has recently attracted attention in scientific and practical applications, is the digital image correlation (DIC). DIC is a contactless approach applicable for obtaining the full field of strains and deformations of full-scale real structures. Although the DIC approach has been widely used in world engineering practice for monitoring bridges and has proved to be a reliable and accurate method, there is a lack of systematic integral review on previous practical applications, revealing limitations and perspectives. This is the main motivation and novelty of this study, which will describe selected case studies in which DIC was used on real full-scale bridge structures and propose improvements for the method.</p>\u0000 </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1763285","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}