基于svm辅助TCN-MHA-BiGRU的桥梁监测系统连续缺失数据恢复方法

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Jingzhou Xin, Xingchen Mo, Yan Jiang, Qizhi Tang, Hong Zhang, Jianting Zhou
{"title":"基于svm辅助TCN-MHA-BiGRU的桥梁监测系统连续缺失数据恢复方法","authors":"Jingzhou Xin,&nbsp;Xingchen Mo,&nbsp;Yan Jiang,&nbsp;Qizhi Tang,&nbsp;Hong Zhang,&nbsp;Jianting Zhou","doi":"10.1155/stc/8833186","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Due to the influence of complex service environments, the bridge health monitoring system (BHMS) has to face issues such as sensor failures and power outages of data acquisition systems, leading to frequent occurrences of data missing events including continuous and discrete data missing. By comparison, the continuous data missing can cover up the time-series characteristic and make the corresponding recovery present a greater difficulty, especially for the data with a large loss rate or complicated features. To this end, this paper develops a novel signal recovery method based on the combination of successive variational mode decomposition (SVMD) and TCN–MHA–BiGRU, which is the hybrid of temporal convolutional networks (TCNs), multihead attention (MHA), and bidirectional gated recurrent unit (BiGRU). In this method, SVMD with high reliability and strong robustness is initially employed to decompose the original signal into multiple stable and regular subseries. Then, TCN–MHA–BiGRU incorporating the concept of “extraction-weighting-description of crucial features” is designed for the independent recovery of each subseries, with the ultimate recovery result derived through the linear superposition of all individual recoveries. This method not only can effectively extract the data time-frequency characteristics (e.g., nonstationarity) but also can accurately capture the data time-series characteristics (e.g., linear and nonlinear dependences) within the data. The case study and the subsequent applicability analysis grounded in the monitoring data from BHMS are employed to comprehensively evaluate the effectiveness of the proposed method. The results indicate that this method outperforms compared methods for the recovery of continuous missing data with different missing rates.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/8833186","citationCount":"0","resultStr":"{\"title\":\"Recovery Method of Continuous Missing Data in the Bridge Monitoring System Using SVMD-Assisted TCN–MHA–BiGRU\",\"authors\":\"Jingzhou Xin,&nbsp;Xingchen Mo,&nbsp;Yan Jiang,&nbsp;Qizhi Tang,&nbsp;Hong Zhang,&nbsp;Jianting Zhou\",\"doi\":\"10.1155/stc/8833186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Due to the influence of complex service environments, the bridge health monitoring system (BHMS) has to face issues such as sensor failures and power outages of data acquisition systems, leading to frequent occurrences of data missing events including continuous and discrete data missing. By comparison, the continuous data missing can cover up the time-series characteristic and make the corresponding recovery present a greater difficulty, especially for the data with a large loss rate or complicated features. To this end, this paper develops a novel signal recovery method based on the combination of successive variational mode decomposition (SVMD) and TCN–MHA–BiGRU, which is the hybrid of temporal convolutional networks (TCNs), multihead attention (MHA), and bidirectional gated recurrent unit (BiGRU). In this method, SVMD with high reliability and strong robustness is initially employed to decompose the original signal into multiple stable and regular subseries. Then, TCN–MHA–BiGRU incorporating the concept of “extraction-weighting-description of crucial features” is designed for the independent recovery of each subseries, with the ultimate recovery result derived through the linear superposition of all individual recoveries. This method not only can effectively extract the data time-frequency characteristics (e.g., nonstationarity) but also can accurately capture the data time-series characteristics (e.g., linear and nonlinear dependences) within the data. The case study and the subsequent applicability analysis grounded in the monitoring data from BHMS are employed to comprehensively evaluate the effectiveness of the proposed method. The results indicate that this method outperforms compared methods for the recovery of continuous missing data with different missing rates.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/8833186\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/stc/8833186\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/8833186","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于复杂服务环境的影响,桥梁健康监测系统(BHMS)面临传感器失效、数据采集系统断电等问题,导致数据丢失事件频繁发生,包括连续数据丢失和离散数据丢失。相比之下,连续的数据缺失会掩盖时间序列特征,使相应的恢复呈现出更大的难度,特别是对于丢失率大或特征复杂的数据。为此,本文提出了一种基于逐次变分模态分解(SVMD)和TCN-MHA-BiGRU相结合的新型信号恢复方法,该方法是时间卷积网络(TCNs)、多头注意(MHA)和双向门控循环单元(BiGRU)的混合体。该方法首先采用可靠性高、鲁棒性强的SVMD将原始信号分解为多个稳定的正则子序列。然后,结合“提取-加权-关键特征描述”的概念,设计了TCN-MHA-BiGRU,对每个子序列进行独立恢复,通过所有单个恢复的线性叠加得到最终的恢复结果。该方法不仅可以有效地提取数据时频特征(如非平稳性),而且可以准确地捕捉数据内的数据时间序列特征(如线性和非线性依赖关系)。通过案例研究和基于BHMS监测数据的适用性分析,对所提方法的有效性进行了综合评价。结果表明,该方法对不同缺失率的连续缺失数据的恢复优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recovery Method of Continuous Missing Data in the Bridge Monitoring System Using SVMD-Assisted TCN–MHA–BiGRU

Recovery Method of Continuous Missing Data in the Bridge Monitoring System Using SVMD-Assisted TCN–MHA–BiGRU

Due to the influence of complex service environments, the bridge health monitoring system (BHMS) has to face issues such as sensor failures and power outages of data acquisition systems, leading to frequent occurrences of data missing events including continuous and discrete data missing. By comparison, the continuous data missing can cover up the time-series characteristic and make the corresponding recovery present a greater difficulty, especially for the data with a large loss rate or complicated features. To this end, this paper develops a novel signal recovery method based on the combination of successive variational mode decomposition (SVMD) and TCN–MHA–BiGRU, which is the hybrid of temporal convolutional networks (TCNs), multihead attention (MHA), and bidirectional gated recurrent unit (BiGRU). In this method, SVMD with high reliability and strong robustness is initially employed to decompose the original signal into multiple stable and regular subseries. Then, TCN–MHA–BiGRU incorporating the concept of “extraction-weighting-description of crucial features” is designed for the independent recovery of each subseries, with the ultimate recovery result derived through the linear superposition of all individual recoveries. This method not only can effectively extract the data time-frequency characteristics (e.g., nonstationarity) but also can accurately capture the data time-series characteristics (e.g., linear and nonlinear dependences) within the data. The case study and the subsequent applicability analysis grounded in the monitoring data from BHMS are employed to comprehensively evaluate the effectiveness of the proposed method. The results indicate that this method outperforms compared methods for the recovery of continuous missing data with different missing rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信