Dynamic Vibration Characteristics and Mitigation of the Stress-Ribbon Bridge by Using a Rail-Damper System

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Kun Xu, HanShuo Wang, Meng Wang, Bin Liu, Satish Nagarajaiah, Qiang Han
{"title":"Dynamic Vibration Characteristics and Mitigation of the Stress-Ribbon Bridge by Using a Rail-Damper System","authors":"Kun Xu,&nbsp;HanShuo Wang,&nbsp;Meng Wang,&nbsp;Bin Liu,&nbsp;Satish Nagarajaiah,&nbsp;Qiang Han","doi":"10.1155/stc/3296513","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Due to its simple and beautiful architectural appearance, the stress-ribbon bridge (SRB) has been gradually built around the world as a pedestrian or traffic bridge. However, as characterized by low bending stiffness and low damping ratio features, SRB is prone to the dynamic effects of external excitations, such as pedestrians, vehicles, and/or winds. To control the vertical vibration of the SRB, a rail-damper system is proposed in this study. In the proposed scheme, the rotation of the handrails triggered by the flexural deformation of the SRB is utilized to drive the viscous dampers installed between the adjacent handrails. The governing equations of the proposed control system are established. The key design parameters and their influences on the dynamic properties of the control system are systematically investigated. The control performances of the proposed rail-damper system are further investigated through an SRB numerical model subjected to pedestrian excitations. It is discovered that the rail-damper system can offer considerable supplemental damping to the structural modes through reasonable design, achieving satisfactory control performances. To gain the excellent effect of the proposed rail-damper system in real applications, a nondimensional rail stiffness of no less than 1000 is recommended, and the stiffness of the damper should be controlled as small as possible.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/3296513","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/3296513","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its simple and beautiful architectural appearance, the stress-ribbon bridge (SRB) has been gradually built around the world as a pedestrian or traffic bridge. However, as characterized by low bending stiffness and low damping ratio features, SRB is prone to the dynamic effects of external excitations, such as pedestrians, vehicles, and/or winds. To control the vertical vibration of the SRB, a rail-damper system is proposed in this study. In the proposed scheme, the rotation of the handrails triggered by the flexural deformation of the SRB is utilized to drive the viscous dampers installed between the adjacent handrails. The governing equations of the proposed control system are established. The key design parameters and their influences on the dynamic properties of the control system are systematically investigated. The control performances of the proposed rail-damper system are further investigated through an SRB numerical model subjected to pedestrian excitations. It is discovered that the rail-damper system can offer considerable supplemental damping to the structural modes through reasonable design, achieving satisfactory control performances. To gain the excellent effect of the proposed rail-damper system in real applications, a nondimensional rail stiffness of no less than 1000 is recommended, and the stiffness of the damper should be controlled as small as possible.

Abstract Image

基于轨道-阻尼系统的应力带状桥梁动力振动特性及减振研究
应力带桥由于其简洁美观的建筑外观,在世界范围内逐渐被建成人行或交通桥梁。然而,由于具有低弯曲刚度和低阻尼比的特点,SRB容易受到外部激励(如行人、车辆和/或风)的动态影响。为了控制SRB的垂直振动,本文提出了一种轨道-阻尼系统。在提出的方案中,利用SRB弯曲变形引发的扶手旋转来驱动安装在相邻扶手之间的粘性阻尼器。建立了该控制系统的控制方程。系统地研究了关键设计参数及其对控制系统动态特性的影响。通过SRB数值模型进一步研究了行人激励下轨道-阻尼器系统的控制性能。研究发现,通过合理的设计,钢轨-阻尼器系统可以为结构模态提供可观的附加阻尼,达到满意的控制性能。为了在实际应用中获得所提出的轨道-阻尼器系统的良好效果,建议无量纲轨道刚度不小于1000,并且阻尼器的刚度应控制在尽可能小的范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信