Performance of Real-Time Hybrid Simulation for Hunting Dampers of High-Speed Trains

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Zhen Wang, Jiajun Xiao, Baoan Zhang, Ge Yang, Bin Wu, Xuejun Jia
{"title":"Performance of Real-Time Hybrid Simulation for Hunting Dampers of High-Speed Trains","authors":"Zhen Wang,&nbsp;Jiajun Xiao,&nbsp;Baoan Zhang,&nbsp;Ge Yang,&nbsp;Bin Wu,&nbsp;Xuejun Jia","doi":"10.1155/stc/4984025","DOIUrl":null,"url":null,"abstract":"<div>\n <p>One favorable solution to the issue of hunting instability of high-speed trains is to install hunting dampers. However, the nonlinearity of dampers and their interaction with a train present significant challenges in accurately analyzing the dynamic behaviors of both dampers and trains. To address these challenges, we present and investigate a real-time hybrid simulation (RTHS) for hunting dampers of high-speed trains and propose an improved two-stage adaptive time-delay compensation method to resolve its demanding delay issue. This innovative approach combines a numerical train model with a full-scale physical hunting damper, providing a versatile method for simulating and analyzing various dynamic behaviors. The train model incorporates 17 degrees of freedom and accounts for the nonlinear wheel–rail contact relationship to more faithfully represent the dynamic response of the train. A virtual RTHS platform with a loading system model has been developed. Both numerical simulations on this platform and real tests are conducted using the RTHS approach. Results demonstrate that time delays can reduce the hunting stability of a high-speed train, and the improved two-stage adaptive time-delay compensation method outperforms other comparative methods. This research reveals the feasibility and efficacy of the RTHS method for hunting dampers of high-speed trains.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/4984025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/4984025","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

One favorable solution to the issue of hunting instability of high-speed trains is to install hunting dampers. However, the nonlinearity of dampers and their interaction with a train present significant challenges in accurately analyzing the dynamic behaviors of both dampers and trains. To address these challenges, we present and investigate a real-time hybrid simulation (RTHS) for hunting dampers of high-speed trains and propose an improved two-stage adaptive time-delay compensation method to resolve its demanding delay issue. This innovative approach combines a numerical train model with a full-scale physical hunting damper, providing a versatile method for simulating and analyzing various dynamic behaviors. The train model incorporates 17 degrees of freedom and accounts for the nonlinear wheel–rail contact relationship to more faithfully represent the dynamic response of the train. A virtual RTHS platform with a loading system model has been developed. Both numerical simulations on this platform and real tests are conducted using the RTHS approach. Results demonstrate that time delays can reduce the hunting stability of a high-speed train, and the improved two-stage adaptive time-delay compensation method outperforms other comparative methods. This research reveals the feasibility and efficacy of the RTHS method for hunting dampers of high-speed trains.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信