Claudia J. Stubenrauch, Stefan Kinne, Giulio Mandorli, William B. Rossow, David M. Winker, Steven A. Ackerman, Helene Chepfer, Larry Di Girolamo, Anne Garnier, Andrew Heidinger, Karl-Göran Karlsson, Kerry Meyer, Patrick Minnis, Steven Platnick, Martin Stengel, Szedung Sun-Mack, Paolo Veglio, Andi Walther, Xia Cai, Alisa H. Young, Guangyu Zhao
{"title":"Lessons Learned from the Updated GEWEX Cloud Assessment Database","authors":"Claudia J. Stubenrauch, Stefan Kinne, Giulio Mandorli, William B. Rossow, David M. Winker, Steven A. Ackerman, Helene Chepfer, Larry Di Girolamo, Anne Garnier, Andrew Heidinger, Karl-Göran Karlsson, Kerry Meyer, Patrick Minnis, Steven Platnick, Martin Stengel, Szedung Sun-Mack, Paolo Veglio, Andi Walther, Xia Cai, Alisa H. Young, Guangyu Zhao","doi":"10.1007/s10712-024-09824-0","DOIUrl":"10.1007/s10712-024-09824-0","url":null,"abstract":"<div><p>Since the first Global Energy and Water Exchanges cloud assessment a decade ago, existing cloud property retrievals have been revised and new retrievals have been developed. The new global long-term cloud datasets show, in general, similar results to those of the previous assessment. A notable exception is the reduced cloud amount provided by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Science Team, resulting from an improved aerosol–cloud distinction. Height, opacity and thermodynamic phase determine the radiative effect of clouds. Their distributions as well as relative occurrences of cloud types distinguished by height and optical depth are discussed. The similar results of the two assessments indicate that further improvement, in particular on vertical cloud layering, can only be achieved by combining complementary information. We suggest such combination methods to estimate the amount of all clouds within the atmospheric column, including those hidden by clouds aloft. The results compare well with those from CloudSat-CALIPSO radar–lidar geometrical profiles as well as with results from the International Satellite Cloud Climatology Project (ISCCP) corrected by the cloud vertical layer model, which is used for the computation of the ISCCP-derived radiative fluxes. Furthermore, we highlight studies on cloud monitoring using the information from the histograms of the database and give guidelines for: (1) the use of satellite-retrieved cloud properties in climate studies and climate model evaluation and (2) improved retrieval strategies.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 6","pages":"1999 - 2048"},"PeriodicalIF":4.9,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-024-09824-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140000975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hybrid Virtual Interferometry Technique Based on Stacking of Neighboring Virtual Traces to Enhance Acoustic Logging Data","authors":"Song Xu, Shun Li, Zhihui Zou","doi":"10.1007/s10712-024-09825-z","DOIUrl":"10.1007/s10712-024-09825-z","url":null,"abstract":"<div><p>The accurate extraction of useful signals from the measurement data is one of the important parts and challenges of the understanding of subsurface information. The desired signal is usually hidden in the background noise, and the amplitude is weak due to the particular geological environment of the subsurface or the consistency of the measuring instrument. By extending the theory of seismic interferometry to include the effects of adjacent virtual channels and by combining super- and reverse-virtual interferometry, we obtain a hybrid virtual interferometry technique based on stacking neighboring virtual traces for wave reconstruction. We have verified the effectiveness of the processing method in suppressing noise interference and extracting useful signals using synthetic data tests. The method is applied to the processing and interpretation of acoustic measurements acquired in a cased borehole of a coal formation and an open hole of an igneous formation, where the processed waveforms are finely reconstructed, and the estimated slowness results are in good agreement with other measurements, thus providing an effective tool for data analysis.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 3","pages":"745 - 771"},"PeriodicalIF":4.9,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-024-09825-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139994183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pavel Roštínský, Lubomil Pospíšil, Otakar Švábenský, Anastasiia Melnyk, Eva Nováková
{"title":"Recent Reactivation of Variscan Tectonic Zones: A Case of Rodl-Kaplice-Blanice Fault System (Bohemian Massif, Austria/Czech Republic)","authors":"Pavel Roštínský, Lubomil Pospíšil, Otakar Švábenský, Anastasiia Melnyk, Eva Nováková","doi":"10.1007/s10712-023-09811-x","DOIUrl":"10.1007/s10712-023-09811-x","url":null,"abstract":"<div><p>The Rodl-Kaplice-Blanice fault system (RKB) of Variscan shear origin, repeatedly active since the Late Paleozoic to the Recent, is expressed by a number of lithological contacts, distinct geophysical gradients and many landforms. A general trend of the RKB as well as linear configuration of its internal architecture is fairly similar to those of topical near Rhine Graben and Alpine-Carpathian transition area as the two other consistent recently reactivated large-scale tectonic structures in the extended (thinned) crust of central Europe. In middle part of the RKB, the occurring linear topographic and geological features parallel to the main RKB sections point to the existence of a wide tectonic zone in the crust following the fault system. Our multidisciplinary study includes a summary of corresponding basic geological data, overview of seismic, regional geophysical and geomorphological conditions, primary model of recent kinematic activity in the RKB area derived from the space (Global Navigation Satellite System—GNSS) monitoring and terrestrial (repeated high precision levelling) geodetic data and comparison of these various information.</p><p>The obtained knowledge indicates that the RKB is active up to ~ 1.0 mm horizontally and > 0.5 mm vertically. The fault system area in the Bohemian Massif can be subdivided into the three parts of diverse tectonic structure and block kinematics. Sinistral horizontal movements are highest near the southern surface sections (Rodl-Kaplice, Rudolfov and Drahotěšice faults), whereas noticeable vertical differentiation is going on mainly along the Blanice and Kouřim faults in the north where the RKB activity is gradually decreasing towards the extensive Elbe shear zone with transverse movements. The middle part of the RKB is dislocated by a large active transverse tectonic structure of the South Bohemian Basins (SBB) with variable horizontal velocity vectors of surface GNSS stations. Most of the weak regional earthquakes have been recorded west of the RKB. Besides faults of the SBB, these were mainly associated with the RKB-subparallel Lhenice fault. Based on the earthquake distribution and foci depths, the latter fault can have similar structural position as the RKB related to lower part of the Variscan level in the ~ 10–12 km depth.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 3","pages":"609 - 661"},"PeriodicalIF":4.9,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-023-09811-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139938895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gravitational Fields of Polyhedral Bodies with 3D Polynomial Density Contrast","authors":"M. G. D’Urso, D. Di Lieto","doi":"10.1007/s10712-023-09822-8","DOIUrl":"10.1007/s10712-023-09822-8","url":null,"abstract":"<div><p>For polyhedral mass bodies having arbitrary shape and density distribution of polynomial type we present a tensorial approach to derive analytical expressions of the gravitational potential and gravity vector. They are evaluated at an arbitrary point by means of formulas, referred to a Cartesian reference frame having an arbitrary origin, that are shown to be singularity-free whatever is the position of the observation point with respect to the body. The solution is expressed as a sum of algebraic quantities depending solely upon the 3D coordinates of the polyhedron vertices and the coefficients of the polynomial density function. Hence, no recursive expression needs to be invoked as in the recent contribution by Ren et al. (Surv Geophys 41:695–722, 2020). Moreover, the tensorial formalism developed in the paper allows one to obtain more concise, coordinate-free expressions that can also be extended to address polynomial functions of greater order. The analytical expressions of the gravitational potential and gravity vector are numerically validated and compared with alternative methods retrieved from the literature.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 3","pages":"887 - 975"},"PeriodicalIF":4.9,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-023-09822-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139705070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bernadetta Pasierb, Grzegorz Gajek, Jan Urban, Wiesław Nawrocki
{"title":"Integrated Geophysical and Geomorphological Studies of Caves in Calcarenite Limestones (Jaskinia pod Świecami Cave, Poland)","authors":"Bernadetta Pasierb, Grzegorz Gajek, Jan Urban, Wiesław Nawrocki","doi":"10.1007/s10712-023-09821-9","DOIUrl":"10.1007/s10712-023-09821-9","url":null,"abstract":"<div><p>The occurrence of subsurface karst caves can cause the development of superficial depressions which, in turn, may pose a construction hazard. Identifying such a substratum requires integrated non-invasive measurement methods. The main objective of the study was to demonstrate the effectiveness of the non-invasive ERT, TLS, and GPR survey techniques in identifying the karst floor and determining the direction of discontinuities around the cave. The paper analyzes the limitations of the methods used in the study of heterogeneous media. These limitations are related to the methodology and measurement conditions, data processing, and interpretation in the context of the resolution and depth range. The study was conducted using the example of the Jaskinia pod Świecami cave, formed in the Sarmatianal calcarenites in Poland. The research confirmed its complex karst-anthropogenic genesis. The cave was formed as a result of the infiltration of rainwater and the dissolution of limestone by groundwater, while the paleokarst forms that are characteristic of it and of the surrounding caves and occur in their vicinity, i.e., narrow ridges called \"karst candles\", were formed as a result of water circulation during the local permafrost degradation in the middle Pleistocene. However, these forms were modified in the Upper Pleistocene and Holocene, as indicated by ERT images.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 3","pages":"663 - 694"},"PeriodicalIF":4.9,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139644171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simultaneous Estimation of P- and S-Wave Velocities by Integrated Inversion of Guided-P and Surface Wave Dispersion Curves","authors":"Zhinong Wang, Chengyu Sun, Dunshi Wu","doi":"10.1007/s10712-023-09814-8","DOIUrl":"10.1007/s10712-023-09814-8","url":null,"abstract":"<div><p>Compared with surface wave corresponding to the normal mode, which is widely studied, there is less research on guided-P wave corresponding to the leaking mode. Guided-P wave carries the dispersion information that can be used to construct the subsurface velocity structures. In this paper, to simultaneously estimate P-wave velocity (<span>({{v}}_{{P}})</span>) and S-wave velocity (<span>({{v}}_{{S}})</span>) structures, an integrated inversion method of guided-P and surface wave dispersion curves is proposed. Through the calculation of Jacobian matrix, the sensitivity of dispersion curves is quantitatively analyzed. It shows that the dispersion curves of guided-P and surface waves are, respectively, sensitive to the <span>({{v}}_{{P}})</span> and <span>({{v}}_{{S}})</span>. Synthetic model tests demonstrate the proposed integrated inversion method can estimate the <span>({{v}}_{{P}})</span> and <span>({{v}}_{{S}})</span> models accurately and effectively identify low-velocity interlayers. The integrated inversion method is also applied to the field seismic data acquired for oil and gas prospecting. The pseudo-2D <span>({{v}}_{{P}})</span>, <span>({{v}}_{{S}})</span> and Poisson’s ratio inversion results are of significance for near-surface geological interpretation. The comparison with the result of first-arrival traveltime tomography further demonstrates the accuracy and practicality of the proposed integrated inversion method. Not only in the field of exploration seismic, the guided-P wave dispersion information can also be extracted from the earthquake seismic, engineering seismic and ambient noise. The proposed inversion method can exploit previously neglected guided-P wave to characterize the subsurface <span>({{v}}_{{P}})</span> structures, showing broad and promising application prospects. This compensates for the inherent defect that the surface wave dispersion curve is mainly sensitive to the <span>({{v}}_{{S}})</span> structure.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 2","pages":"429 - 458"},"PeriodicalIF":4.9,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139407428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unravelling the Electrical Conductivity of Earth and Planets","authors":"Alexander Grayver","doi":"10.1007/s10712-023-09813-9","DOIUrl":"10.1007/s10712-023-09813-9","url":null,"abstract":"<div><p>This review presents the progress made in the last decade in the field of large-scale electromagnetic (EM) induction with natural sources, which fluctuate at periods from seconds to years and originate in oceans, ionosphere and magnetosphere. These mechanisms produce field variations that can be used to image subsurface electrical structure of Earth and planets across scales and depths from the shallow crust to the lower mantle. In the last decade, we have seen a substantial progress made in different areas related to methods, observations and 3-D numerical modelling of EM phenomena at crustal and mantle scales. Specifically, new methods for handling complex ionospheric and magnetospheric sources were proposed, accompanied by more efficient forward and inverse modelling tools that allowed us to combine several broadband sources and constrain electrical conductivity on multiple scales simultaneously. Magnetic signals due to oceanic tides were established as a new source to probe conductivity of the sub-oceanic upper mantle. Further, the launch of ESA Swarm satellites in 2013 and their successful ongoing operation have marked a new era in the field of large-scale EM induction, unlocking a set of new opportunities, but also posing new challenges. These developments were backed by new lab measurements of electrical conductivity for mantle minerals at temperatures and pressures that are getting closer to the relevant pressure and temperature conditions in the mantle, alleviating the need for inaccurate extrapolations. The latter enabled more plausible quantitative estimates of water content, melt fractions and temperature in the mantle. In parallel, crust and mantle conductivity models along with developed modelling techniques have become an integral part of geomagnetic field and geomagnetically induced currents (GICs) modelling workflows, establishing new inter-disciplinary knowledge domains.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 1","pages":"187 - 238"},"PeriodicalIF":4.9,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-023-09813-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139112122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three-Dimensional Urban Subsurface Space Tomography with Dense Ambient Noise Seismic Array","authors":"Ruizhe Sun, Jing Li, Yingwei Yan, Hui Liu, Lige Bai, Yuqing Chen","doi":"10.1007/s10712-023-09819-3","DOIUrl":"10.1007/s10712-023-09819-3","url":null,"abstract":"<div><p>Two-dimensional dense seismic ambient noise array techniques have been widely used to image and monitor subsurface structure characterization in complex urban environments. It does not have limitations in the layout under the limitation of urban space, which is more suitable for 3D <i>S</i>-velocity imaging. In traditional ambient seismic noise tomography, the narrowband filtering (NBF) method has many possible dispersion branches. Aliases would appear in the dispersive image, and the dispersion curve inversion also depends on the initial model. To obtain high-accuracy 3D <i>S</i>-velocity imaging in urban seismology, we developed a robust workflow of data processing and <i>S</i>-velocity tomography for 2D dense ambient noise arrays. Firstly, differing from the NBF method, we adopt the continuous wavelet transform (CWT) as an alternative method to measure the phase velocity from the interstation noise cross-correlation function (NCF) without 2<i>π</i> ambiguity. Then, we proposed the sequential dispersion curve inversion (DCI) strategy, which combines the Dix linear inversion and preconditioned fast descent (PFD) method to invert the <i>S</i>-velocity structure without prior information. Finally, the 3D <i>S</i>-velocity model is generated by the 3D spatial interpolation. The proposed workflow is applied to the 2D dense ambient seismic array dataset in Changchun City. The quality evaluation methods include residual iteration error, horizontal-to-vertical spectral ratio (HVSR) map, and electrical resistivity tomography (ERT). All tests indicate that the developed workflow provides a reliable 3D <i>S</i>-velocity model, which offers a reference for urban subsurface space exploration.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 3","pages":"819 - 843"},"PeriodicalIF":4.9,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-023-09819-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139112057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Resolution Sonic Slowness Estimation Based on the Reconstruction of Neighboring Virtual Traces","authors":"Song Xu, Shun Li, Zhihui Zou","doi":"10.1007/s10712-023-09820-w","DOIUrl":"10.1007/s10712-023-09820-w","url":null,"abstract":"<div><p>The estimation of elastic properties of thin-bed formations from sonic logging is challenging. Standard slowness processing of sonic logging waveforms typically yields an average slowness log profile over the span of the receiver array, obscuring thin-layer features smaller than the array aperture. In order to enhance vertical resolution of the slowness logs, the subarray processing techniques have been developed. However, for the subarrays with smaller aperture, the semblance from subarray waveforms becomes susceptible to noise, which results in a low signal-to-noise (S/N) ratio for the processing slowness logs. To overcome the above drawbacks, we propose a slowness estimation method with the enhanced resolution ranging from the conventional array aperture resolution to the inter-receiver spacing based on the reconstruction of neighboring virtual traces (RNVTs). The method utilizes super-virtual interferometry to reconstruct a large number of waveforms for slowness extraction using redundant information from overlapping receiver subarrays. We validate the feasibility and effectiveness of the proposed method using synthetic numerical experiments. By adding different levels of noise to synthetic data, we conclude that the new method has better noise robustness. Finally, we apply this method to field data, and the estimated high-resolution slowness logs show good agreement in interbedded sand-shale sequences. Both numerical tests and examples of field data show that, the slowness logs estimated by the new method can be obtained with a high resolution as well as with a high S/N ratio, providing an effective method for assessing slowness properties from a borehole.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 3","pages":"721 - 743"},"PeriodicalIF":4.9,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139076616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Asfour, R. Martin, D. El Baz, L. Bodet, B. Plazolles
{"title":"Impact of Source Modelling and Poroelastic Models on Numerical Modelling of Unconsolidated Granular Media: Application at the Laboratory Scale","authors":"K. Asfour, R. Martin, D. El Baz, L. Bodet, B. Plazolles","doi":"10.1007/s10712-023-09812-w","DOIUrl":"10.1007/s10712-023-09812-w","url":null,"abstract":"<div><p>The near surface is characterized by using different numerical techniques, among them seismic techniques that are non-destructive. More particularly, for a better understanding of acoustic and seismic measurements in unconsolidated granular media that can constitute the near surface, many studies have been conducted in situ and also at the laboratory scale where theoretical models have been developed. In this article, we want to model such granular media that are difficult to characterize. At the laboratory scale, dry granular media can be modelled with a homogenized power-law elastic model that depends on depth. In this context, we validate numerically a similar power-law elastic model for such media by applying it to a homogenized elastic medium or to the solid frame of a poroelastic medium that consists of solid and air components. By comparing the response of both rheologies, we want to highlight what poroelastic media can bring to better reproduce the experimental data in the time and frequency domains. To achieve this objective, we revisit studies carried out on unconsolidated granular media at the laboratory scale and we compare different models with different rheologies (elastic or poroelastic), dimensions (2D or 3D), boundary conditions (perfectly matched layer/PML, or Dirichlet) and locations of the source (modelled as a vibratory stick or a point force) in order to reproduce the experimental data. We show here that a poroelastic model describes better the amplitudes of the seismograms. Furthermore, we study the sensitivity of the seismic data to the source location, which is crucial to improve the amplitude of the signals and the detection of the different seismic modes.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 2","pages":"489 - 524"},"PeriodicalIF":4.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138740590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}