{"title":"Detectability of Seamount Eruptions Through a Quantum Technology Gravity Mission MOCAST+: Hunga Tonga, Fani Maoré and Other Smaller Eruptions","authors":"Carla Braitenberg, Alberto Pastorutti","doi":"10.1007/s10712-024-09839-7","DOIUrl":"10.1007/s10712-024-09839-7","url":null,"abstract":"<div><p>Seamount eruptions alter the bathymetry and can occur undetected due to lack of explosive character. We review documented eruptions to define whether they could be detected by a future satellite gravity mission. We adopt the noise level in acquisitions of multi-satellite constellations as in the MOCAST+ study, with a proposed payload of a quantum technology gradiometer and clock. The review of underwater volcanoes includes the Hunga Tonga Hunga Ha’apai (HTHH) islands for which the exposed surface changed during volcanic unrests of 2014/2015 and 2021/2022. The Fani Maoré submarine volcanic eruption of 2018–2021 produced a new seamount 800 m high, emerging from a depth of 3500 m, and therefore not seen above sea surface. We review further documented submarine eruptions and estimate the upper limit of the expected gravity changes. We find that a MOCAST+ type mission should allow us to detect the subsurface mass changes generated by deep ocean submarine volcanic activity for volume changes of 6.5 km<sup>3</sup> upwards, with latency of 1 year. This change is met by the HTHH and Fani Maoré volcanoes.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 4","pages":"1331 - 1361"},"PeriodicalIF":4.9,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-024-09839-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140903017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Norman G. Loeb, Seung-Hee Ham, Richard P. Allan, Tyler J. Thorsen, Benoit Meyssignac, Seiji Kato, Gregory C. Johnson, John M. Lyman
{"title":"Observational Assessment of Changes in Earth’s Energy Imbalance Since 2000","authors":"Norman G. Loeb, Seung-Hee Ham, Richard P. Allan, Tyler J. Thorsen, Benoit Meyssignac, Seiji Kato, Gregory C. Johnson, John M. Lyman","doi":"10.1007/s10712-024-09838-8","DOIUrl":"10.1007/s10712-024-09838-8","url":null,"abstract":"<div><p>Satellite observations from the Clouds and the Earth’s Radiant Energy System show that Earth’s energy imbalance has doubled from 0.5 ± 0.2 Wm<sup>−2</sup> during the first 10 years of this century to 1.0 ± 0.2 Wm<sup>−</sup><sup>2</sup> during the past decade. The increase is the result of a 0.9 ± 0.3 Wm<sup>−2</sup> increase absorbed solar radiation (ASR) that is partially offset by a 0.4 ± 0.25 Wm<sup>−2</sup> increase in outgoing longwave radiation (OLR). Despite marked differences in ASR and OLR trends during the hiatus (2000–2010), transition-to-El Niño (2010–2016) and post-El Niño (2016–2022) periods, trends in net top-of-atmosphere flux (NET) remain within 0.1 Wm<sup>−2</sup> per decade of one another, implying a steady acceleration of climate warming. Northern and southern hemisphere trends in NET are consistent to 0.06 ± 0.31 Wm<sup>−2</sup> per decade due to a compensation between weak ASR and OLR hemispheric trend differences of opposite sign. We find that large decreases in stratocumulus and middle clouds over the sub-tropics and decreases in low and middle clouds at mid-latitudes are the primary reasons for increasing ASR trends in the northern hemisphere (NH). These changes are especially large over the eastern and northern Pacific Ocean, and coincide with large increases in sea-surface temperature (SST). The decrease in cloud fraction and higher SSTs over the NH sub-tropics lead to a significant increase in OLR from cloud-free regions, which partially compensate for the NH ASR increase. Decreases in middle cloud reflection and a weaker reduction in low-cloud reflection account for the increase in ASR in the southern hemisphere, while OLR changes are weak. Changes in cloud cover in response to SST increases imply a feedback to climate change yet a contribution from radiative forcing or internal variability cannot be ruled out.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 6","pages":"1757 - 1783"},"PeriodicalIF":4.9,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-024-09838-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140845199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Far-Zone Effects for Spherical Integral Transformations I: Formulas for the Radial Boundary Value Problem and its Derivatives","authors":"Michal Šprlák, Martin Pitoňák","doi":"10.1007/s10712-023-09818-4","DOIUrl":"10.1007/s10712-023-09818-4","url":null,"abstract":"<div><p>Integral transformations represent an important mathematical tool for gravitational field modelling. A basic assumption of integral transformations is the global data coverage, but availability of high-resolution and accurate gravitational data may be restricted. Therefore, we decompose the global integration into two parts: (1) the effect of the near zone calculated by the numerical integration of data within a spherical cap and (2) the effect of the far zone due to data beyond the spherical cap synthesised by harmonic expansions. Theoretical and numerical aspects of this decomposition have frequently been studied for isotropic integral transformations on the sphere, such as Hotine’s, Poisson’s, and Stokes’s integral formulas. In this article, we systematically review the mathematical theory of the far-zone effects for the spherical integral formulas, which transform the disturbing gravitational potential or its purely radial derivatives into observable quantities of the gravitational field, i.e. the disturbing gravitational potential and its radial, horizontal, or mixed derivatives of the first, second, or third order. These formulas are implemented in a MATLAB software and validated in a closed-loop simulation. Selected properties of the harmonic expansions are investigated by examining the behaviour of the truncation error coefficients. The mathematical formulations presented here are indispensable for practical solutions of direct or inverse problems in an accurate gravitational field modelling or when studying statistical properties of integral transformations.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 3","pages":"977 - 1009"},"PeriodicalIF":4.9,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-023-09818-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140845016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sebastian Bathiany, Robbin Bastiaansen, Ana Bastos, Lana Blaschke, Jelle Lever, Sina Loriani, Wanda De Keersmaecker, Wouter Dorigo, Milutin Milenković, Cornelius Senf, Taylor Smith, Jan Verbesselt, Niklas Boers
{"title":"Ecosystem Resilience Monitoring and Early Warning Using Earth Observation Data: Challenges and Outlook","authors":"Sebastian Bathiany, Robbin Bastiaansen, Ana Bastos, Lana Blaschke, Jelle Lever, Sina Loriani, Wanda De Keersmaecker, Wouter Dorigo, Milutin Milenković, Cornelius Senf, Taylor Smith, Jan Verbesselt, Niklas Boers","doi":"10.1007/s10712-024-09833-z","DOIUrl":"https://doi.org/10.1007/s10712-024-09833-z","url":null,"abstract":"<p>As the Earth system is exposed to large anthropogenic interferences, it becomes ever more important to assess the resilience of natural systems, i.e., their ability to recover from natural and human-induced perturbations. Several, often related, measures of resilience have been proposed and applied to modeled and observed data, often by different scientific communities. Focusing on terrestrial ecosystems as a key component of the Earth system, we review methods that can detect large perturbations (temporary excursions from a reference state as well as abrupt shifts to a new reference state) in spatio-temporal datasets, estimate the recovery rate after such perturbations, or assess resilience changes indirectly from stationary time series via indicators of critical slowing down. We present here a sequence of ideal methodological steps in the field of resilience science, and argue how to obtain a consistent and multi-faceted view on ecosystem or climate resilience from Earth observation (EO) data. While EO data offers unique potential to study ecosystem resilience globally at high spatial and temporal scale, we emphasize some important limitations, which are associated with the theoretical assumptions behind diagnostic methods and with the measurement process and pre-processing steps of EO data. The latter class of limitations include gaps in time series, the disparity of scales, and issues arising from aggregating time series from multiple sensors. Based on this assessment, we formulate specific recommendations to the EO community in order to improve the observational basis for ecosystem resilience research.</p>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"107 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140845207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photonic Seismology: A New Decade of Distributed Acoustic Sensing in Geophysics from 2012 to 2023","authors":"Feng Cheng","doi":"10.1007/s10712-024-09840-0","DOIUrl":"10.1007/s10712-024-09840-0","url":null,"abstract":"<div><p>This paper delivers an in-depth bibliometric analysis of distributed acoustic sensing (DAS) research within the realm of geophysics, covering the period from 2012 to 2023 and drawing on data from the Web of Science. By employing bibliographic and structured network analysis methods, including the use of Bibliometrix and VOSviewer<sup>®</sup>, the study highlights the most influential scholars, leading institutions, and pivotal research contributions that have significantly shaped the field of DAS in geophysics. The research delves into key collaborative dynamics, unraveling them through co-authorship network analysis, and delves into thematic developments and trajectories via comprehensive co-citation and keyword co-occurrence network analyses. These analyses elucidate the most robust and prominent areas within DAS research. A critical insight gained from this study is the rise of ‘photonic seismology’ as an emerging interdisciplinary domain, exemplifying the fusion of photonic sensing techniques with seismic science. This paper also discusses certain limitations inherent in the study and concludes with implications for future research.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 4","pages":"1205 - 1243"},"PeriodicalIF":4.9,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140814771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pressure Effects on Plane Wave Reflection and Transmission in Fluid-Saturated Porous Media","authors":"Fubin Chen, Zhaoyun Zong, Reza Rezaee, Xingyao Yin","doi":"10.1007/s10712-024-09829-9","DOIUrl":"10.1007/s10712-024-09829-9","url":null,"abstract":"<div><p>The wave reflection and transmission (R/T) coefficients in fluid-saturated porous media with the effect of effective pressure are rarely studied, despite the ubiquitous presence of in situ pressure in the subsurface Earth. To fill this knowledge gap, we derive exact R/T coefficient equations for a plane wave incident obliquely at the interface between the dissimilar pressured fluid-saturated porous half-spaces described by the theory of poro-acoustoelasticity (PAE). The central result of the classic PAE theory is first reviewed, and then a dual-porosity model is employed to generalize this theory by incorporating the impact of nonlinear crack deformation. The new velocity equations of generalized PAE theory can describe the nonlinear pressure dependence of fast P-, S- and slow P-wave velocities and have a reasonable agreement with the laboratory measurements. The general boundary conditions associated with membrane stiffness are used to yield the exact pressure-dependent wave R/T coefficient equations. We then model the impacts of effective pressure on the angle and frequency dependence of wave R/T coefficients and synthetic seismic responses in detail and compare our equations to the previously reported equations in zero-pressure case. It is inferred that the existing R/T coefficient equations for porous media may be misleading, since they lack consideration for inevitable in situ pressure effects. Modeling results also indicate that effective pressure and membrane stiffness significantly affect the amplitude variation with offset characteristics of reflected seismic signatures, which emphasizes the significance of considering the effects of both in practical applications related to the observed seismic data. By comparing the modeled R/T coefficients to the results computed with laboratory measured velocities, we preliminarily confirm the validity of our equations. Our equations and results are relevant to hydrocarbon exploration, in situ pressure detection and geofluid discrimination in high-pressure fields.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 4","pages":"1245 - 1290"},"PeriodicalIF":4.9,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140814369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Joint Inversion Method of Gravity and Magnetic Data with Adaptive Zoning Using Gramian in Both Petrophysical and Structural Domains","authors":"Tingyi Wang, Guoqing Ma, Qingfa Meng, Taihan Wang, Zhexin Jiang","doi":"10.1007/s10712-024-09832-0","DOIUrl":"10.1007/s10712-024-09832-0","url":null,"abstract":"<div><p>Different observation data are utilized to obtain a unified geophysical model based on the correlations of underground geological bodies in joint inversions. By specifying a type of Gramian constraints, Gramian as a coupling term can link geophysical models through relationships of physical properties or structural similarities. Considering the complex relationships of physical properties of underground geological bodies, we proposed an adaptive zoning method to automatically divide the whole inversion area into subregions with different relationships of physical properties and to determine the number and range of subregions that utilized correlation between geophysical data before joint inversions. On this basis, we considered the use of a combination of Gramian coupling terms rather than one term to link petrophysical and structural domains during joint inversions. Synthetic tests showed that the algorithm is capable of having a robust estimate of the spatial distribution and relationships between density and magnetization intensity of geological bodies. The idea was also applied to the ore concentration area in the middle and lower reaches of the Yangtze River to obtain the three-dimensional (3-D) distribution model of magnetite-bearing rocks within 5 km underground, which corresponds well with the existing shallow ore sites and demonstrates the existence of available deep resources in the study area.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 4","pages":"1291 - 1330"},"PeriodicalIF":4.9,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140814380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luping Qu, Wenyong Pan, Kristopher Innanen, Marie Macquet, Donald Lawton
{"title":"Feasibility Study of Anisotropic Full-Waveform Inversion with DAS Data in a Vertical Seismic Profile Configuration at the Newell County Facility, Alberta, Canada","authors":"Luping Qu, Wenyong Pan, Kristopher Innanen, Marie Macquet, Donald Lawton","doi":"10.1007/s10712-024-09836-w","DOIUrl":"10.1007/s10712-024-09836-w","url":null,"abstract":"<div><p>As an emerging seismic acquisition technology, distributed acoustic sensing (DAS) has drawn significant attention in earth science for long-term and cost-effective monitoring of underground activities. Field seismic experiments with optical fibers in a vertical seismic profile (VSP) configuration were conducted at the Newell County Facility of Carbon Management Canada in Alberta, Canada, for <span>({text{CO}}_2)</span> injection and storage monitoring. Seismic full-waveform inversion (FWI) represents one promising approach for high-resolution imaging of subsurface model properties. In this study, anisotropic FWI with variable density is applied to the DAS-recorded walk-away VSP data for characterizing the subsurface velocity, anisotropy, and density structures, serving as baseline models for future time-lapse studies at the pilot site. Synthetic inversion experiments suggest that, without accounting for anisotropy, the inverted density structures by isotropic FWI are damaged by strong trade-off artifacts. Anisotropic FWI can provide more accurate P-wave velocity, density, and valuable anisotropy models. Field data applications are then performed to validate the effectiveness and superiority of the proposed methods. Compared to the inversion outputs of isotropic FWI, the inverted P-wave velocity by anisotropic FWI matches trend variation of the well log more closely. In the inverted density model, the <span>({text{CO}}_2)</span> injection formation can be clearly resolved. The inverted anisotropy parameters provide informative references to interpret the structures and lithology around the target <span>({text{CO}}_2)</span> injection zone.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 4","pages":"1117 - 1142"},"PeriodicalIF":4.9,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140642670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Mayer, Seiji Kato, Michael Bosilovich, Peter Bechtold, Johannes Mayer, Marc Schröder, Ali Behrangi, Martin Wild, Shinya Kobayashi, Zhujun Li, Tristan L’Ecuyer
{"title":"Assessment of Atmospheric and Surface Energy Budgets Using Observation-Based Data Products","authors":"Michael Mayer, Seiji Kato, Michael Bosilovich, Peter Bechtold, Johannes Mayer, Marc Schröder, Ali Behrangi, Martin Wild, Shinya Kobayashi, Zhujun Li, Tristan L’Ecuyer","doi":"10.1007/s10712-024-09827-x","DOIUrl":"10.1007/s10712-024-09827-x","url":null,"abstract":"<div><p>Accurate diagnosis of regional atmospheric and surface energy budgets is critical for understanding the spatial distribution of heat uptake associated with the Earth’s energy imbalance (EEI). This contribution discusses frameworks and methods for consistent evaluation of key quantities of those budgets using observationally constrained data sets. It thereby touches upon assumptions made in data products which have implications for these evaluations. We evaluate 2001–2020 average regional total (TE) and dry static energy (DSE) budgets using satellite-based and reanalysis data. For the first time, a consistent framework is applied to the ensemble of the 5th generation European Reanalysis (ERA5), version 2 of modern-era retrospective analysis for research and applications (MERRA-2), and the Japanese 55-year Reanalysis (JRA55). Uncertainties of the computed budgets are assessed through inter-product spread and evaluation of physical constraints. Furthermore, we use the TE budget to infer fields of net surface energy flux. Results indicate biases < 1 W/m<sup>2</sup> on the global, < 5 W/m<sup>2</sup> on the continental, and ~ 15 W/m<sup>2</sup> on the regional scale. Inferred net surface energy fluxes exhibit reduced large-scale biases compared to surface flux data based on remote sensing and models. We use the DSE budget to infer atmospheric diabatic heating from condensational processes. Comparison to observation-based precipitation data indicates larger uncertainties (10–15 Wm<sup>−2</sup> globally) in the DSE budget compared to the TE budget, which is reflected by increased spread in reanalysis-based fields. Continued validation efforts of atmospheric energy budgets are needed to document progress in new and upcoming observational products, and to understand their limitations when performing EEI research.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 6","pages":"1827 - 1854"},"PeriodicalIF":4.9,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-024-09827-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140607550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-rank Representation for Seismic Reflectivity and its Applications in Least-squares Imaging","authors":"Jidong Yang, Jianping Huang, Hao Zhang, Jiaxing Sun, Hejun Zhu, George McMechan","doi":"10.1007/s10712-024-09828-w","DOIUrl":"10.1007/s10712-024-09828-w","url":null,"abstract":"<div><p>Sparse representation and inversion have been widely used in the acquisition and processing of geophysical data. In particular, the low-rank representation of seismic signals shows that they can be determined by a few elementary modes with predominantly large singular values. We review global and local low-rank representation for seismic reflectivity models and then apply it to least-squares migration (LSM) in acoustic and viscoacoustic media. In the global singular value decomposition (SVD), the elementary modes determined by singular vectors represent horizontal and vertical stratigraphic segments sorted from low to high wavenumbers, and the corresponding singular values reflect the contribution of these basic modes to form a broadband reflectivity model. In contrast, local SVD for grouped patch matrices can capture nonlocal similarity and thus accurately represent the reflectivity model with fewer ranks than the global SVD method. Taking advantage of this favorable sparsity, we introduce a local low-rank regularization into LSM to estimate subsurface reflectivity models. A two-step algorithm is developed to solve this low-rank constrained inverse problem: the first step is for least-squares data fitting and the second is for weighted nuclear-norm minimization. Numerical experiments for synthetic and field data demonstrate that the low-rank constraint outperforms conventional shaping and total-variation regularizations, and can produce high-quality reflectivity images for complicated structures and low signal-to-noise data.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 3","pages":"845 - 886"},"PeriodicalIF":4.9,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-024-09828-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140607941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}