{"title":"元处理:多任务地震处理的稳健框架","authors":"Shijun Cheng, Randy Harsuko, Tariq Alkhalifah","doi":"10.1007/s10712-024-09837-9","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning-based seismic processing models are typically trained separately to perform seismic processing tasks (SPTs) and, as a result, require plenty of high-quality training data. However, preparing training data sets is not trivial, especially for supervised learning (SL). Despite the variability in seismic data across different types and regions, some general characteristics are shared, such as their sinusoidal nature and geometric texture. To learn the shared features and thus, quickly adapt to various SPTs, we develop a unified paradigm for neural network-based seismic processing, called Meta-Processing, that uses limited training data for meta learning a common network initialization, which offers universal adaptability features. The proposed Meta-Processing framework consists of two stages: meta-training and meta-testing. In the former, each SPT is treated as a separate task and the training dataset is divided into support and query sets. Unlike conventional SL methods, here, the neural network (NN) parameters are updated by a bilevel gradient descent from the support set to the query set, iterating through all tasks. In the meta-testing stage, we also utilize limited data to fine-tune the optimized NN parameters in an SL fashion to conduct various SPTs, such as denoising, interpolation, ground-roll attenuation, image enhancement, and velocity estimation, aiming to converge quickly to ideal performance. Extensive numerical experiments are conducted to assess the effectiveness of Meta-Processing on both synthetic and real-world data. The findings reveal that our approach leads to a substantial improvement in the convergence speed and predictive performance of the NN.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 4","pages":"1081 - 1116"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-Processing: A robust framework for multi-tasks seismic processing\",\"authors\":\"Shijun Cheng, Randy Harsuko, Tariq Alkhalifah\",\"doi\":\"10.1007/s10712-024-09837-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Machine learning-based seismic processing models are typically trained separately to perform seismic processing tasks (SPTs) and, as a result, require plenty of high-quality training data. However, preparing training data sets is not trivial, especially for supervised learning (SL). Despite the variability in seismic data across different types and regions, some general characteristics are shared, such as their sinusoidal nature and geometric texture. To learn the shared features and thus, quickly adapt to various SPTs, we develop a unified paradigm for neural network-based seismic processing, called Meta-Processing, that uses limited training data for meta learning a common network initialization, which offers universal adaptability features. The proposed Meta-Processing framework consists of two stages: meta-training and meta-testing. In the former, each SPT is treated as a separate task and the training dataset is divided into support and query sets. Unlike conventional SL methods, here, the neural network (NN) parameters are updated by a bilevel gradient descent from the support set to the query set, iterating through all tasks. In the meta-testing stage, we also utilize limited data to fine-tune the optimized NN parameters in an SL fashion to conduct various SPTs, such as denoising, interpolation, ground-roll attenuation, image enhancement, and velocity estimation, aiming to converge quickly to ideal performance. Extensive numerical experiments are conducted to assess the effectiveness of Meta-Processing on both synthetic and real-world data. The findings reveal that our approach leads to a substantial improvement in the convergence speed and predictive performance of the NN.</p></div>\",\"PeriodicalId\":49458,\"journal\":{\"name\":\"Surveys in Geophysics\",\"volume\":\"45 4\",\"pages\":\"1081 - 1116\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surveys in Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10712-024-09837-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10712-024-09837-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Meta-Processing: A robust framework for multi-tasks seismic processing
Machine learning-based seismic processing models are typically trained separately to perform seismic processing tasks (SPTs) and, as a result, require plenty of high-quality training data. However, preparing training data sets is not trivial, especially for supervised learning (SL). Despite the variability in seismic data across different types and regions, some general characteristics are shared, such as their sinusoidal nature and geometric texture. To learn the shared features and thus, quickly adapt to various SPTs, we develop a unified paradigm for neural network-based seismic processing, called Meta-Processing, that uses limited training data for meta learning a common network initialization, which offers universal adaptability features. The proposed Meta-Processing framework consists of two stages: meta-training and meta-testing. In the former, each SPT is treated as a separate task and the training dataset is divided into support and query sets. Unlike conventional SL methods, here, the neural network (NN) parameters are updated by a bilevel gradient descent from the support set to the query set, iterating through all tasks. In the meta-testing stage, we also utilize limited data to fine-tune the optimized NN parameters in an SL fashion to conduct various SPTs, such as denoising, interpolation, ground-roll attenuation, image enhancement, and velocity estimation, aiming to converge quickly to ideal performance. Extensive numerical experiments are conducted to assess the effectiveness of Meta-Processing on both synthetic and real-world data. The findings reveal that our approach leads to a substantial improvement in the convergence speed and predictive performance of the NN.
期刊介绍:
Surveys in Geophysics publishes refereed review articles on the physical, chemical and biological processes occurring within the Earth, on its surface, in its atmosphere and in the near-Earth space environment, including relations with other bodies in the solar system. Observations, their interpretation, theory and modelling are covered in papers dealing with any of the Earth and space sciences.