Observational Assessment of Changes in Earth’s Energy Imbalance Since 2000

IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Norman G. Loeb, Seung-Hee Ham, Richard P. Allan, Tyler J. Thorsen, Benoit Meyssignac, Seiji Kato, Gregory C. Johnson, John M. Lyman
{"title":"Observational Assessment of Changes in Earth’s Energy Imbalance Since 2000","authors":"Norman G. Loeb, Seung-Hee Ham, Richard P. Allan, Tyler J. Thorsen, Benoit Meyssignac, Seiji Kato, Gregory C. Johnson, John M. Lyman","doi":"10.1007/s10712-024-09838-8","DOIUrl":null,"url":null,"abstract":"<p>Satellite observations from the Clouds and the Earth’s Radiant Energy System show that Earth’s energy imbalance has doubled from 0.5 ± 0.2 Wm<sup>−2</sup> during the first 10 years of this century to 1.0 ± 0.2 Wm<sup>−</sup><sup>2</sup> during the past decade. The increase is the result of a 0.9 ± 0.3 Wm<sup>−2</sup> increase absorbed solar radiation (ASR) that is partially offset by a 0.4 ± 0.25 Wm<sup>−2</sup> increase in outgoing longwave radiation (OLR). Despite marked differences in ASR and OLR trends during the hiatus (2000–2010), transition-to-El Niño (2010–2016) and post-El Niño (2016–2022) periods, trends in net top-of-atmosphere flux (NET) remain within 0.1 Wm<sup>−2</sup> per decade of one another, implying a steady acceleration of climate warming. Northern and southern hemisphere trends in NET are consistent to 0.06 ± 0.31 Wm<sup>−2</sup> per decade due to a compensation between weak ASR and OLR hemispheric trend differences of opposite sign. We find that large decreases in stratocumulus and middle clouds over the sub-tropics and decreases in low and middle clouds at mid-latitudes are the primary reasons for increasing ASR trends in the northern hemisphere (NH). These changes are especially large over the eastern and northern Pacific Ocean, and coincide with large increases in sea-surface temperature (SST). The decrease in cloud fraction and higher SSTs over the NH sub-tropics lead to a significant increase in OLR from cloud-free regions, which partially compensate for the NH ASR increase. Decreases in middle cloud reflection and a weaker reduction in low-cloud reflection account for the increase in ASR in the southern hemisphere, while OLR changes are weak. Changes in cloud cover in response to SST increases imply a feedback to climate change yet a contribution from radiative forcing or internal variability cannot be ruled out.</p>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"20 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10712-024-09838-8","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite observations from the Clouds and the Earth’s Radiant Energy System show that Earth’s energy imbalance has doubled from 0.5 ± 0.2 Wm−2 during the first 10 years of this century to 1.0 ± 0.2 Wm2 during the past decade. The increase is the result of a 0.9 ± 0.3 Wm−2 increase absorbed solar radiation (ASR) that is partially offset by a 0.4 ± 0.25 Wm−2 increase in outgoing longwave radiation (OLR). Despite marked differences in ASR and OLR trends during the hiatus (2000–2010), transition-to-El Niño (2010–2016) and post-El Niño (2016–2022) periods, trends in net top-of-atmosphere flux (NET) remain within 0.1 Wm−2 per decade of one another, implying a steady acceleration of climate warming. Northern and southern hemisphere trends in NET are consistent to 0.06 ± 0.31 Wm−2 per decade due to a compensation between weak ASR and OLR hemispheric trend differences of opposite sign. We find that large decreases in stratocumulus and middle clouds over the sub-tropics and decreases in low and middle clouds at mid-latitudes are the primary reasons for increasing ASR trends in the northern hemisphere (NH). These changes are especially large over the eastern and northern Pacific Ocean, and coincide with large increases in sea-surface temperature (SST). The decrease in cloud fraction and higher SSTs over the NH sub-tropics lead to a significant increase in OLR from cloud-free regions, which partially compensate for the NH ASR increase. Decreases in middle cloud reflection and a weaker reduction in low-cloud reflection account for the increase in ASR in the southern hemisphere, while OLR changes are weak. Changes in cloud cover in response to SST increases imply a feedback to climate change yet a contribution from radiative forcing or internal variability cannot be ruled out.

Abstract Image

对 2000 年以来地球能量失衡变化的观测评估
云层和地球辐射能量系统的卫星观测结果表明,地球的能量失衡已经翻了一番,从本世纪头十年的 0.5 ± 0.2 Wm-2 增加到过去十年的 1.0 ± 0.2 Wm-2。这是因为吸收太阳辐射(ASR)增加了 0.9 ± 0.3 Wm-2,而外向长波辐射(OLR)增加了 0.4 ± 0.25 Wm-2,部分抵消了吸收太阳辐射的增加。尽管在间歇期(2000-2010 年)、向厄尔尼诺过渡时期(2010-2016 年)和后厄尔尼诺时期(2016-2022 年),吸收太阳辐射和外向长波辐射的趋势存在明显差异,但大气层顶净通量(NET)的趋势仍然保持在每十年 0.1 Wm-2 的范围内,这意味着气候变暖在稳步加速。由于微弱的 ASR 和 OLR 半球趋势差异的补偿作用,南北半球的净通量趋势一致为每十年 0.06 ± 0.31 Wm-2。我们发现,亚热带平流云和中云的大量减少以及中纬度低云和中云的减少是北半球 ASR 趋势增加的主要原因。这些变化在太平洋东部和北部尤为明显,与海面温度(SST)的大幅上升相吻合。北半球亚热带地区云量的减少和较高的 SST 导致无云地区的 OLR 显著增加,从而部分弥补了北半球 ASR 的增加。中云反射的减少和低云反射的较弱减少是南半球 ASR 增加的原因,而 OLR 变化较弱。云层变化对海温上升的响应意味着对气候变化的反馈,但也不能排除辐射强迫或内部变率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surveys in Geophysics
Surveys in Geophysics 地学-地球化学与地球物理
CiteScore
10.00
自引率
10.90%
发文量
64
审稿时长
4.5 months
期刊介绍: Surveys in Geophysics publishes refereed review articles on the physical, chemical and biological processes occurring within the Earth, on its surface, in its atmosphere and in the near-Earth space environment, including relations with other bodies in the solar system. Observations, their interpretation, theory and modelling are covered in papers dealing with any of the Earth and space sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信