{"title":"Differential Antisymmetric Infinitesimal Bialgebras, Coherent Derivations and Poisson Bialgebras","authors":"Yuanchang Lin, Xuguang Liu, C. Bai","doi":"10.3842/SIGMA.2023.018","DOIUrl":"https://doi.org/10.3842/SIGMA.2023.018","url":null,"abstract":"We establish a bialgebra theory for differential algebras, called differential antisymmetric infinitesimal (ASI) bialgebras by generalizing the study of ASI bialgebras to the context of differential algebras, in which the derivations play an important role. They are characterized by double constructions of differential Frobenius algebras as well as matched pairs of differential algebras. Antisymmetric solutions of an analogue of associative Yang-Baxter equation in differential algebras provide differential ASI bialgebras, whereas in turn the notions of O-operators of differential algebras and differential dendriform algebras are also introduced to produce the former. On the other hand, the notion of a coherent derivation on an ASI bialgebra is introduced as an equivalent structure of a differential ASI bialgebra. They include derivations on ASI bialgebras and the set of coherent derivations on an ASI bialgebra composes a Lie algebra which is the Lie algebra of the Lie group consisting of coherent automorphisms on this ASI bialgebra. Finally, we apply the study of differential ASI bialgebras to Poisson bialgebras, extending the construction of Poisson algebras from commutative differential algebras with two commuting derivations to the context of bialgebras, which is consistent with the well constructed theory of Poisson bialgebras. In particular, we construct Poisson bialgebras from differential Zinbiel algebras.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47323185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Generalization of Zwegers' μ-Function According to the q -Hermite-Weber Difference Equation","authors":"Genki Shibukawa, Satoshi Tsuchimi","doi":"10.3842/SIGMA.2023.014","DOIUrl":"https://doi.org/10.3842/SIGMA.2023.014","url":null,"abstract":"We introduce a one parameter deformation of the Zwegers' $mu$-function as the image of $q$-Borel and $q$-Laplace transformations of a fundamental solution for the $q$-Hermite-Weber equation. We further give some formulas for our generalized $mu$-function, for example, forward and backward shift, translation, symmetry, a difference equation for the new parameter, and bilateral $q$-hypergeometric expressions. From one point of view, the continuous $q$-Hermite polynomials are some special cases of our $mu$-function, and the Zwegers' $mu$-function is regarded as a continuous $q$-Hermite polynomial of ''$-1$ degree''.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44715012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Fourth-Order Lattice Gel'fand-Dikii Equations","authors":"Guesh Yfter Tela, Songlin Zhao, Da‐jun Zhang","doi":"10.3842/SIGMA.2023.007","DOIUrl":"https://doi.org/10.3842/SIGMA.2023.007","url":null,"abstract":"The fourth-order lattice Gel'fand-Dikii equations in quadrilateral form are investigated. Utilizing the direct linearization approach, we present some equations of the extended lattice Gel'fand-Dikii type. These equations are related to a quartic discrete dispersion relation and can be viewed as higher-order members of the extended lattice Boussinesq type equations. The resulting lattice equations given here are in five-component form, and some of them are multi-dimensionally consistent by introducing extra equations. Lax integrability is discussed both by direct linearization scheme and also through multi-dimensional consistent property. Some reductions of the five-component lattice equations to the four-component forms are considered.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47212199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some Useful Operators on Differential Forms on Galilean and Carrollian Spacetimes","authors":"M. Fecko","doi":"10.3842/SIGMA.2023.024","DOIUrl":"https://doi.org/10.3842/SIGMA.2023.024","url":null,"abstract":"Differential forms on Lorentzian spacetimes is a well-established subject. On Galilean and Carrollian spacetimes it does not seem to be quite so. This may be due to the absence of Hodge star operator. There are, however, potentially useful analogs of Hodge star operator also on the last two spacetimes, namely intertwining operators between corresponding representations on forms. Their use could perhaps make differential forms as attractive tool for physics on Galilean and Carrollian spacetimes as forms on Lorentzian spacetimes definitely proved to be.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47389684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Generalized WKB Expansion of Monodromy Generating Function","authors":"R. Klimov","doi":"10.3842/SIGMA.2023.026","DOIUrl":"https://doi.org/10.3842/SIGMA.2023.026","url":null,"abstract":"We study symplectic properties of the monodromy map of the Schrödinger equation on a Riemann surface with a meromorphic potential having second-order poles. At first, we discuss the conditions for the base projective connection, which induces its own set of Darboux homological coordinates, to imply the Goldman Poisson structure on the character variety. Using this result, we extend the paper [Theoret. and Math. Phys. 206 (2021), 258-295, arXiv:1910.07140], by performing generalized WKB expansion of the generating function of monodromy symplectomorphism (the Yang-Yang function) and computing its first three terms.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48423776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maximal Discrete Subgroups in Unitary Groups of Operator Algebras","authors":"V. Alekseev, A. Thom","doi":"10.3842/sigma.2022.052","DOIUrl":"https://doi.org/10.3842/sigma.2022.052","url":null,"abstract":". We show that if a group G is mixed-identity-free, then the projective unitary group of its group von Neumann algebra contains a maximal discrete subgroup containing G . The proofs are elementary and make use of free probability theory. In addition, we clarify the situation for C ∗ -algebras.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41625060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Askey-Wilson Algebra of Rank 2","authors":"W. Groenevelt, Carel Wagenaar","doi":"10.3842/SIGMA.2023.008","DOIUrl":"https://doi.org/10.3842/SIGMA.2023.008","url":null,"abstract":"An algebra is introduced which can be considered as a rank 2 extension of the Askey-Wilson algebra. Relations in this algebra are motivated by relations between coproducts of twisted primitive elements in the two-fold tensor product of the quantum algebra $mathcal{U}_{q}(mathfrak{sl}(2,mathbb C))$. It is shown that bivariate $q$-Racah polynomials appear as overlap coefficients of eigenvectors of generators of the algebra. Furthermore, the corresponding $q$-difference operators are calculated using the defining relations of the algebra, showing that it encodes the bispectral properties of the bivariate $q$-Racah polynomials.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41753862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Derived Pure Spinor Formalism as an Equivalence of Categories","authors":"C. Elliott, F. Hahner, Ingmar Saberi","doi":"10.3842/SIGMA.2023.022","DOIUrl":"https://doi.org/10.3842/SIGMA.2023.022","url":null,"abstract":"We construct a derived generalization of the pure spinor superfield formalism and prove that it exhibits an equivalence of dg-categories between multiplets for a supertranslation algebra and equivariant modules over its Chevalley-Eilenberg cochains. This equivalence is closely linked to Koszul duality for the supertranslation algebra. After introducing and describing the category of supermultiplets, we define the derived pure spinor construction explicitly as a dg-functor. We then show that the functor that takes the derived supertranslation invariants of any supermultiplet is a quasi-inverse to the pure spinor construction, using an explicit calculation. Finally, we illustrate our findings with examples and use insights from the derived formalism to answer some questions regarding the ordinary (underived) pure spinor superfield formalism.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49407963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Refined and Generalized hat Z Invariants for Plumbed 3-Manifolds","authors":"Song Jin Ri","doi":"10.3842/SIGMA.2023.011","DOIUrl":"https://doi.org/10.3842/SIGMA.2023.011","url":null,"abstract":"We introduce a two-variable refinement $hat{Z}_a(q,t)$ of plumbed 3-manifold invariants $hat{Z}_a(q)$, which were previously defined for weakly negative definite plumbed 3-manifolds. We also provide a number of explicit examples in which we argue the recovering process to obtain $hat{Z}_a(q)$ from $hat{Z}_a(q,t)$ by taking a limit $ trightarrow 1 $. For plumbed 3-manifolds with two high-valency vertices, we analytically compute the limit by using the explicit integer solutions of quadratic Diophantine equations in two variables. Based on numerical computations of the recovered $hat{Z}_a(q)$ for plumbings with two high-valency vertices, we propose a conjecture that the recovered $hat{Z}_a(q)$, if exists, is an invariant for all tree plumbed 3-manifolds. Finally, we provide a formula of the $hat{Z}_a(q,t)$ for the connected sum of plumbed 3-manifolds in terms of those for the components.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42100544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Freezing Limits for Beta-Cauchy Ensembles","authors":"M. Voit","doi":"10.3842/SIGMA.2022.069","DOIUrl":"https://doi.org/10.3842/SIGMA.2022.069","url":null,"abstract":"Bessel processes associated with the root systems $A_{N-1}$ and $B_N$ describe interacting particle systems with $N$ particles on $mathbb R$; they form dynamic versions of the classical $beta$-Hermite and Laguerre ensembles. In this paper we study corresponding Cauchy processes constructed via some subordination. This leads to $beta$-Cauchy ensembles in both cases with explicit distributions. For these distributions we derive central limit theorems for fixed $N$ in the freezing regime, i.e., when the parameters tend to infinity. The results are closely related to corresponding known freezing results for $beta$-Hermite and Laguerre ensembles and for Bessel processes.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43541464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}