秩2的Askey-Wilson代数

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
W. Groenevelt, Carel Wagenaar
{"title":"秩2的Askey-Wilson代数","authors":"W. Groenevelt, Carel Wagenaar","doi":"10.3842/SIGMA.2023.008","DOIUrl":null,"url":null,"abstract":"An algebra is introduced which can be considered as a rank 2 extension of the Askey-Wilson algebra. Relations in this algebra are motivated by relations between coproducts of twisted primitive elements in the two-fold tensor product of the quantum algebra $\\mathcal{U}_{q}(\\mathfrak{sl}(2,\\mathbb C))$. It is shown that bivariate $q$-Racah polynomials appear as overlap coefficients of eigenvectors of generators of the algebra. Furthermore, the corresponding $q$-difference operators are calculated using the defining relations of the algebra, showing that it encodes the bispectral properties of the bivariate $q$-Racah polynomials.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Askey-Wilson Algebra of Rank 2\",\"authors\":\"W. Groenevelt, Carel Wagenaar\",\"doi\":\"10.3842/SIGMA.2023.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algebra is introduced which can be considered as a rank 2 extension of the Askey-Wilson algebra. Relations in this algebra are motivated by relations between coproducts of twisted primitive elements in the two-fold tensor product of the quantum algebra $\\\\mathcal{U}_{q}(\\\\mathfrak{sl}(2,\\\\mathbb C))$. It is shown that bivariate $q$-Racah polynomials appear as overlap coefficients of eigenvectors of generators of the algebra. Furthermore, the corresponding $q$-difference operators are calculated using the defining relations of the algebra, showing that it encodes the bispectral properties of the bivariate $q$-Racah polynomials.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3842/SIGMA.2023.008\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2023.008","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

介绍了一个代数,它可以看作是Askey-Wilson代数的秩2的扩展。该代数中的关系是由量子代数$\mathcal的二重张量积中扭曲基元的互积之间的关系驱动的{U}_{q} (\mathfrak{sl}(2,\mathbb C))$。结果表明,二元$q$-Racah多项式表现为代数生成元特征向量的重叠系数。此外,使用代数的定义关系计算了相应的$q$-差分算子,表明它编码了二元$q$-Razah多项式的双谱性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Askey-Wilson Algebra of Rank 2
An algebra is introduced which can be considered as a rank 2 extension of the Askey-Wilson algebra. Relations in this algebra are motivated by relations between coproducts of twisted primitive elements in the two-fold tensor product of the quantum algebra $\mathcal{U}_{q}(\mathfrak{sl}(2,\mathbb C))$. It is shown that bivariate $q$-Racah polynomials appear as overlap coefficients of eigenvectors of generators of the algebra. Furthermore, the corresponding $q$-difference operators are calculated using the defining relations of the algebra, showing that it encodes the bispectral properties of the bivariate $q$-Racah polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信