{"title":"Differential Antisymmetric Infinitesimal Bialgebras, Coherent Derivations and Poisson Bialgebras","authors":"Yuanchang Lin, Xuguang Liu, C. Bai","doi":"10.3842/SIGMA.2023.018","DOIUrl":null,"url":null,"abstract":"We establish a bialgebra theory for differential algebras, called differential antisymmetric infinitesimal (ASI) bialgebras by generalizing the study of ASI bialgebras to the context of differential algebras, in which the derivations play an important role. They are characterized by double constructions of differential Frobenius algebras as well as matched pairs of differential algebras. Antisymmetric solutions of an analogue of associative Yang-Baxter equation in differential algebras provide differential ASI bialgebras, whereas in turn the notions of O-operators of differential algebras and differential dendriform algebras are also introduced to produce the former. On the other hand, the notion of a coherent derivation on an ASI bialgebra is introduced as an equivalent structure of a differential ASI bialgebra. They include derivations on ASI bialgebras and the set of coherent derivations on an ASI bialgebra composes a Lie algebra which is the Lie algebra of the Lie group consisting of coherent automorphisms on this ASI bialgebra. Finally, we apply the study of differential ASI bialgebras to Poisson bialgebras, extending the construction of Poisson algebras from commutative differential algebras with two commuting derivations to the context of bialgebras, which is consistent with the well constructed theory of Poisson bialgebras. In particular, we construct Poisson bialgebras from differential Zinbiel algebras.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2023.018","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We establish a bialgebra theory for differential algebras, called differential antisymmetric infinitesimal (ASI) bialgebras by generalizing the study of ASI bialgebras to the context of differential algebras, in which the derivations play an important role. They are characterized by double constructions of differential Frobenius algebras as well as matched pairs of differential algebras. Antisymmetric solutions of an analogue of associative Yang-Baxter equation in differential algebras provide differential ASI bialgebras, whereas in turn the notions of O-operators of differential algebras and differential dendriform algebras are also introduced to produce the former. On the other hand, the notion of a coherent derivation on an ASI bialgebra is introduced as an equivalent structure of a differential ASI bialgebra. They include derivations on ASI bialgebras and the set of coherent derivations on an ASI bialgebra composes a Lie algebra which is the Lie algebra of the Lie group consisting of coherent automorphisms on this ASI bialgebra. Finally, we apply the study of differential ASI bialgebras to Poisson bialgebras, extending the construction of Poisson algebras from commutative differential algebras with two commuting derivations to the context of bialgebras, which is consistent with the well constructed theory of Poisson bialgebras. In particular, we construct Poisson bialgebras from differential Zinbiel algebras.
期刊介绍:
Scope
Geometrical methods in mathematical physics
Lie theory and differential equations
Classical and quantum integrable systems
Algebraic methods in dynamical systems and chaos
Exactly and quasi-exactly solvable models
Lie groups and algebras, representation theory
Orthogonal polynomials and special functions
Integrable probability and stochastic processes
Quantum algebras, quantum groups and their representations
Symplectic, Poisson and noncommutative geometry
Algebraic geometry and its applications
Quantum field theories and string/gauge theories
Statistical physics and condensed matter physics
Quantum gravity and cosmology.