关于单调生成函数的广义WKB展开

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
R. Klimov
{"title":"关于单调生成函数的广义WKB展开","authors":"R. Klimov","doi":"10.3842/SIGMA.2023.026","DOIUrl":null,"url":null,"abstract":"We study symplectic properties of the monodromy map of the Schrödinger equation on a Riemann surface with a meromorphic potential having second-order poles. At first, we discuss the conditions for the base projective connection, which induces its own set of Darboux homological coordinates, to imply the Goldman Poisson structure on the character variety. Using this result, we extend the paper [Theoret. and Math. Phys. 206 (2021), 258-295, arXiv:1910.07140], by performing generalized WKB expansion of the generating function of monodromy symplectomorphism (the Yang-Yang function) and computing its first three terms.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Generalized WKB Expansion of Monodromy Generating Function\",\"authors\":\"R. Klimov\",\"doi\":\"10.3842/SIGMA.2023.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study symplectic properties of the monodromy map of the Schrödinger equation on a Riemann surface with a meromorphic potential having second-order poles. At first, we discuss the conditions for the base projective connection, which induces its own set of Darboux homological coordinates, to imply the Goldman Poisson structure on the character variety. Using this result, we extend the paper [Theoret. and Math. Phys. 206 (2021), 258-295, arXiv:1910.07140], by performing generalized WKB expansion of the generating function of monodromy symplectomorphism (the Yang-Yang function) and computing its first three terms.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3842/SIGMA.2023.026\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2023.026","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有二阶极点的亚纯势的Riemann曲面上Schrödinger方程的单调映射的辛性质。首先,我们讨论了基投影连接的条件,它导出了自己的一组Darboux同源坐标,从而在特征变化上暗示了Goldman-Poisson结构。利用这一结果,我们对论文[定理和数学物理.206(2021),258-295,arXiv:1910.07140]进行了推广,对单调亚纯的生成函数(杨函数)进行了广义WKB展开,并计算了它的前三项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Generalized WKB Expansion of Monodromy Generating Function
We study symplectic properties of the monodromy map of the Schrödinger equation on a Riemann surface with a meromorphic potential having second-order poles. At first, we discuss the conditions for the base projective connection, which induces its own set of Darboux homological coordinates, to imply the Goldman Poisson structure on the character variety. Using this result, we extend the paper [Theoret. and Math. Phys. 206 (2021), 258-295, arXiv:1910.07140], by performing generalized WKB expansion of the generating function of monodromy symplectomorphism (the Yang-Yang function) and computing its first three terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信