Wave Motion最新文献

筛选
英文 中文
Qualitative difference between large waves in deep and shallow fluid formulations 深层和浅层流体公式中大波浪的定性差异。
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-07-14 DOI: 10.1016/j.wavemoti.2024.103388
{"title":"Qualitative difference between large waves in deep and shallow fluid formulations","authors":"","doi":"10.1016/j.wavemoti.2024.103388","DOIUrl":"10.1016/j.wavemoti.2024.103388","url":null,"abstract":"<div><p>The note addresses a qualitative difference between shallow (vertically confined) and deep (vertically non-confined) fluid geometries for stationary internal solitary waves. It is shown that in a deep fluid, the propagation velocity of large amplitude wave (with a vortex inside) is greater than the velocity predicted by small but finite amplitude theory, known as the Benjamin-Ono model. This effect has been found both asymptotically and experimentally. For the case of a shallow fluid, the situation is qualitatively different. The speed of a wave with vortex inside is smaller than that predicted by the Korteweg-de Vries theory. The reported observation could distinguish wave motions in shallow (confined) and deep (non-confined) geometries and seems to be important in a variety of applications.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141694288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear spatial evolution of degenerate quartets of water waves 退化四元水波的非线性空间演化
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-07-08 DOI: 10.1016/j.wavemoti.2024.103381
{"title":"Nonlinear spatial evolution of degenerate quartets of water waves","authors":"","doi":"10.1016/j.wavemoti.2024.103381","DOIUrl":"10.1016/j.wavemoti.2024.103381","url":null,"abstract":"<div><p>In this manuscript we investigate the Benjamin–Feir (or modulation) instability for the spatial evolution of water waves from the perspective of the discrete, spatial Zakharov equation, which captures cubically nonlinear and resonant wave interactions in deep water without restrictions on spectral bandwidth. Spatial evolution, with measurements at discrete locations, is pertinent for laboratory hydrodynamic experiments, such as in wave flumes, which rely on time-series measurements at fixed gauges installed along the facility. This setting is likewise appropriate for experiments in electromagnetic and plasma waves. Through a reformulation of the problem for a degenerate quartet, we bring to bear techniques of phase-plane analysis which elucidate the full dynamics without recourse to linear stability analysis. In particular we find hitherto unexplored breather solutions and discuss the optimal transfer of energy from carrier to sidebands. We show that the maximal energy transfer consistently occurs for smaller side-band separation than the fastest linear growth rate. Finally, we discuss the observability of such discrete solutions in light of numerical simulations.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165212524001112/pdfft?md5=fcf799ab1722a519cbfe463644b45236&pid=1-s2.0-S0165212524001112-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical fibers with a frequency-dependent Kerr nonlinearity: Theory and applications 具有频率相关克尔非线性的光纤:理论与应用
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-07-08 DOI: 10.1016/j.wavemoti.2024.103386
{"title":"Optical fibers with a frequency-dependent Kerr nonlinearity: Theory and applications","authors":"","doi":"10.1016/j.wavemoti.2024.103386","DOIUrl":"10.1016/j.wavemoti.2024.103386","url":null,"abstract":"<div><p>This review provides a detailed discussion of both the mathematical treatment and the impact of a frequency-dependent Kerr nonlinearity on the propagation of short pulses in optical fibers. We revisit the theoretical framework required to deal with the frequency dependence of the nonlinear response without incurring any physical inconsistencies, such as the non-conservation of the photon number. Then, we point out the role of the zero-nonlinearity wavelength, its interplay with the zero-dispersion wavelength, and their influence on evolution of optical pulses in optical fibers, specifically by looking at soliton propagation and the ensuing generation of Cherenkov radiation. Finally, by means of a space–time analogy involving the collision of a weak control pulse and an intense soliton, we describe an all-optical switching scheme in the presence of a zero-nonlinearity wavelength within a photon-conserving framework.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Riemann–Hilbert problem for a (3+1)-dimensional nonlinear evolution equation (3+1)- 维非线性演化方程的黎曼-希尔伯特问题
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-07-06 DOI: 10.1016/j.wavemoti.2024.103387
{"title":"Riemann–Hilbert problem for a (3+1)-dimensional nonlinear evolution equation","authors":"","doi":"10.1016/j.wavemoti.2024.103387","DOIUrl":"10.1016/j.wavemoti.2024.103387","url":null,"abstract":"<div><p>This paper concentrates on a (3+1)-dimensional nonlinear evolution equation. By introducing a transformation, the (3+1)-dimensional nonlinear evolution equation is decomposed into three integrable (1+1)-dimensional models. On the basis of a quartet Lax pair, we build the associated matrix Riemann–Hilbert problem. As a consequence, solving the obtained matrix Riemann–Hilbert problem with the identity jump matrix, corresponding to the reflectionless, the soliton solution to the (3+1)-dimensional nonlinear evolution equation is acquired. Specially, the one-soliton solutions are worked out and analyzed graphically.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141712920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-parametric solutions to the functional difference KdV equation 函数差分 KdV 方程的多参数解法
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-07-06 DOI: 10.1016/j.wavemoti.2024.103385
Pierre Gaillard
{"title":"Multi-parametric solutions to the functional difference KdV equation","authors":"Pierre Gaillard","doi":"10.1016/j.wavemoti.2024.103385","DOIUrl":"https://doi.org/10.1016/j.wavemoti.2024.103385","url":null,"abstract":"<div><p>Using a specific Darboux transformation, we construct solutions to the functional difference KdV equation in terms of Casorati determinants. We give a complete description of the method and the corresponding proofs. We construct explicitly some solutions for the first orders.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141605807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear waves and transitions mechanisms for (2+1)-dimensional Korteweg–de Vries-Sawada-Kotera-Ramani equation (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani 方程的非线性波和转换机制
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-07-05 DOI: 10.1016/j.wavemoti.2024.103383
Xueqing Zhang, Bo Ren
{"title":"Nonlinear waves and transitions mechanisms for (2+1)-dimensional Korteweg–de Vries-Sawada-Kotera-Ramani equation","authors":"Xueqing Zhang,&nbsp;Bo Ren","doi":"10.1016/j.wavemoti.2024.103383","DOIUrl":"https://doi.org/10.1016/j.wavemoti.2024.103383","url":null,"abstract":"<div><p>In this paper, state transition waves are investigated in a (2+1)-dimensional Korteweg–de Vries-Sawada-Kotera-Ramani equation by analyzing characteristic lines. Firstly, the <span><math><mi>N</mi></math></span>-soliton solutions are given by using the Hirota bilinear method. The breather and lump waves are constructed by applying complex conjugation limits and the long-wave limit method to the parameters. In addition, the transition condition of breather and lump wave are obtained by using characteristic line analysis. The state transition waves consist of quasi-anti-dark soliton, M-shaped soliton, oscillation M-shaped soliton, multi-peak soliton, W-shaped soliton, and quasi-periodic wave soliton. Through analysis, when solitary wave and periodic wave components undergo nonlinear superposition, it leads to the formation of breather waves and transformed wave structures. It can be used to explain the deformable collisions of transformation waves after collision. Furthermore, the time-varying property of transformed waves are studied using characteristic line analysis. Based on the high-order breather solutions, the interactions involving breathers, state transition waves, and solitons are exhibited. Finally, the dynamics of these hybrid solutions are analyzed through symbolic computations and graphical representations.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy transfer in the Holstein approach for the interplay between periodic on-site and linear acoustic potentials 霍尔施泰因方法中周期性现场和线性声势相互作用的能量转移
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-07-04 DOI: 10.1016/j.wavemoti.2024.103382
{"title":"Energy transfer in the Holstein approach for the interplay between periodic on-site and linear acoustic potentials","authors":"","doi":"10.1016/j.wavemoti.2024.103382","DOIUrl":"10.1016/j.wavemoti.2024.103382","url":null,"abstract":"<div><p>We study the problem of a transferring electron along a lattice of phonons, in the continuous long wave limit, holding periodic on-site and linear longitudinal interactions in Holstein’s approach. We thus find that the continuum limit of our modeling produces an effective coupling between the linear Schrödinger and sine–Gordon equations. Then, we take advantage of the existence of trapped kink–anti kink solutions in the sine–Gordon equation to variationally describe traveling localized coupled solutions. We validate our variational findings by solving numerically the full coupled system. Very reasonable agreement is found between the variational and full numerical solutions for the amplitude evolution of both profiles; the wave function and the trapped kink–anti kink. Our results show the significance of permitting longitudinal interactions in the Holstein’s approach to hold trapped localized solutions. It is actually found a critical ratio between longitudinal and on-site interactions, as depending on the velocity of propagation, from where coupled localized solutions exist.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Waves in space-dependent and time-dependent materials: A systematic comparison 与空间有关和与时间有关的材料中的波:系统比较
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-07-03 DOI: 10.1016/j.wavemoti.2024.103374
Kees Wapenaar , Johannes Aichele , Dirk-Jan van Manen
{"title":"Waves in space-dependent and time-dependent materials: A systematic comparison","authors":"Kees Wapenaar ,&nbsp;Johannes Aichele ,&nbsp;Dirk-Jan van Manen","doi":"10.1016/j.wavemoti.2024.103374","DOIUrl":"https://doi.org/10.1016/j.wavemoti.2024.103374","url":null,"abstract":"<div><p>Waves in space-dependent and in time-dependent materials obey similar wave equations, with interchanged time- and space-coordinates. However, since the causality conditions are the same in both types of material (i.e., without interchangement of time- and space-coordinates), the solutions are dissimilar.</p><p>We present a systematic treatment of wave propagation and scattering in 1D space-dependent and in 1D time-dependent materials. After formulating unified equations, we discuss Green’s functions and simple wave field representations for both types of material. Next we discuss propagation invariants, i.e., quantities that are independent of the space coordinate in a space-dependent material (such as the net power-flux density) or of the time coordinate in a time-dependent material (such as the net field-momentum density). A discussion of general reciprocity theorems leads to the well-known source-receiver reciprocity relation for the Green’s function of a space-dependent material and a new source-receiver reciprocity relation for the Green’s function of a time-dependent material. A discussion of general wave field representations leads to the well-known expression for Green’s function retrieval from the correlation of passive measurements in a space-dependent material and a new expression for Green’s function retrieval in a time-dependent material.</p><p>After an introduction of a matrix–vector wave equation, we discuss propagator matrices for both types of material. Since the initial condition for a propagator matrix in a time-dependent material follows from the boundary condition for a propagator matrix in a space-dependent material by interchanging the time- and space-coordinates, the propagator matrices for both types of material are interrelated in the same way. This also applies to representations and reciprocity theorems involving propagator matrices, and to Marchenko-type focusing functions.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165212524001045/pdfft?md5=85426f62506a97da9455edf5cdf8bf71&pid=1-s2.0-S0165212524001045-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141605806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wave propagation over a non-reflective profile of limited depth 波在深度有限的非反射剖面上传播
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-07-03 DOI: 10.1016/j.wavemoti.2024.103380
Ioann Melnikov
{"title":"Wave propagation over a non-reflective profile of limited depth","authors":"Ioann Melnikov","doi":"10.1016/j.wavemoti.2024.103380","DOIUrl":"https://doi.org/10.1016/j.wavemoti.2024.103380","url":null,"abstract":"<div><p>Non-reflective wave propagation is of great importance for applications because it allows energy to be transmitted over long distances. The paper discusses the method of reducing the equations of the linear theory of shallow water to a wave equation with a variable coefficient in the form of an inverse hyperbolic sine, the solution of which is represented as a composition of traveling waves. Thanks to this, a new non-reflective bottom profile has been obtained, which reaches a constant at infinity. Wave behavior on the shore is discussed, as well as the conditions under which the wave field remains finite on it. A detailed analysis of the obtained exact solution to the shallow water equations is given in the paper.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patterns of rational solutions in a split-ring-resonator-based left-handed coplanar waveguide 基于分环谐振器的左手共面波导中的有理解模式
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-07-02 DOI: 10.1016/j.wavemoti.2024.103378
{"title":"Patterns of rational solutions in a split-ring-resonator-based left-handed coplanar waveguide","authors":"","doi":"10.1016/j.wavemoti.2024.103378","DOIUrl":"10.1016/j.wavemoti.2024.103378","url":null,"abstract":"<div><p>The exploration of rational solutions of first and second orders, along with the investigation of modulation instability, has been conducted in the left-handed coplanar waveguide based on split-ring resonators. This study is inspired by the research of Abbagari et al. (0000), where solitonic rogue wave structures were derived as manifestations of the growth rate of modulation instability. Under this argument, we have used the perturbations method to derive the Kundu–Eckhaus equation to analyze the characteristics of the high-order rogue waves. Beside these findings, we have realized that rogue wave structures are propagated in the left-handed frequency bands. We also notice that modulation instability growth develops in the frequency bands when the product of the nonlinearity coefficient and dispersion coefficient is positive. Through a numerical simulation, we have developed the rogue wave objects to confirm our analytical predictions. Another significant aspect addressed in this study is the sensitivity of both modulation instability and higher-order rogue waves to the normalized parameter introduced through the third-order expansion of the voltage-dependent capacitance and perturbed wave number. The long-lived results have been equally validated for specific times of propagation. These results could be used in the future in left-handed metamaterials for several applications.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141694718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信