Wave MotionPub Date : 2024-10-22DOI: 10.1016/j.wavemoti.2024.103424
José M. Carcione , Jing Ba
{"title":"Test of the relation between temporal and spatial Q by Knopoff et al.","authors":"José M. Carcione , Jing Ba","doi":"10.1016/j.wavemoti.2024.103424","DOIUrl":"10.1016/j.wavemoti.2024.103424","url":null,"abstract":"<div><div>The quality factor is a dimensionless measure of the energy loss per cycle of wave modes in an attenuation medium. Accurate measurement is important in various fields, from seismological studies to detect zones of partial melting to the geophysics of reservoirs to study rock properties such as porosity, fluid properties and saturation and permeability. In seismology, the quality factors measured for normal (standing) modes and propagating waves differ, as well those of equivalent experiments based on resonant rods and ultrasonic pulses performed in the laboratory. These measurements result in temporal and spatial quality factors respectively. A relationship between these two different quality factors and between the corresponding attenuation factors was proposed by Knopoff et al. sixty years ago. The conversion factor is basically the ratio between the phase velocity and the group velocity, while for the attenuation factor is the group velocity. We test these relations, which hold for low-loss solids, for body waves, using a Kelvin–Voigt rheology and a constant <span><math><mi>Q</mi></math></span> model, which provide explicit expressions of the temporal and spatial quality factors and velocities involved in these relations. The proposed theory provides the basis for a complete characterization of temporal and spatial quality factors and velocity dispersion based on arbitrary stress–strain relationships.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"132 ","pages":"Article 103424"},"PeriodicalIF":2.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wave MotionPub Date : 2024-10-22DOI: 10.1016/j.wavemoti.2024.103426
Liu Yang, Ben Gao
{"title":"The dynamic behaviors between double-hump solitons in birefringent fibers","authors":"Liu Yang, Ben Gao","doi":"10.1016/j.wavemoti.2024.103426","DOIUrl":"10.1016/j.wavemoti.2024.103426","url":null,"abstract":"<div><div>In this paper, we research the fractional coupled Hirota equations with variable coefficients describing the collisions of two waves in deep oceans and the propagation of ultrashort light pulses in birefringent fibers and successfully acquire the double-hump one-soliton, two-solitons and <em>N</em>-solitons solutions via the Hirota bilinear method. At the same time, the Bäcklund transformation and the corresponding soliton solutions are also obtained. Based on the precise forms of the solitons solutions, we gain double-hump solitons images with different shapes including U-shape, V-shape and wave-type by assigning proper functions to the group velocity dispersion and the third-order dispersion and analyze the interaction dynamics of double-hump solitons. It is worth noting that the Hirota bilinear operators involved here are fractional rather than integer, which has never appeared in previous literatures.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"132 ","pages":"Article 103426"},"PeriodicalIF":2.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wave MotionPub Date : 2024-10-19DOI: 10.1016/j.wavemoti.2024.103418
John Lekner
{"title":"Localized solutions of the wave equation","authors":"John Lekner","doi":"10.1016/j.wavemoti.2024.103418","DOIUrl":"10.1016/j.wavemoti.2024.103418","url":null,"abstract":"<div><div>A family of solutions of the wave equation is presented. The simplest waveforms represent sub-cycle pulses; oscillatory pulses with a dominant wavenumber are also discussed. These solutions are sufficiently localized to have finite energy, momentum, and angular momentum when applied to acoustic and electromagnetic pulses. The energy, momentum, and angular momentum of the pulses are simply expressed in terms of the wavenumber weight function.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"132 ","pages":"Article 103418"},"PeriodicalIF":2.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wave MotionPub Date : 2024-10-19DOI: 10.1016/j.wavemoti.2024.103431
Ting Wang , Huachang Cui , Jingyu Zhang , Hanbei Guo , Meixia Chen
{"title":"Longitudinal wave propagation in a practical metamaterial lattice","authors":"Ting Wang , Huachang Cui , Jingyu Zhang , Hanbei Guo , Meixia Chen","doi":"10.1016/j.wavemoti.2024.103431","DOIUrl":"10.1016/j.wavemoti.2024.103431","url":null,"abstract":"<div><div>A practical metamaterial lattice is constructed by integrating curved beams, four-link mechanisms, and cantilever beams with lumped masses. It can generate two complete low-frequency bandgaps due to the lateral local resonance, inertia mass, and the main chain. The effective mass density and stiffness are obtained using different effective models, which show negative within the bandgaps. The analysis of the energy distribution and the space wave attenuation reveals that the metamaterial can attenuate the elastic waves in an exponential form within the bandgaps along the lattice. The finite element model is established to show the dynamic behaviour of the elastic wave propagation in the frequency domain and transient domain. Both results show that waves can be efficiently blocked within the bandgaps, while outside the bandgaps, waves can propagate without any attenuation. Finally, the experimental model of practical metamaterial is constructed, and the test piece is excited by a force hammer. Experimental results verify that the practical metamaterial can efficiently suppress the vibration within the bandgap frequency and validate the accuracy of the theoretical prediction.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"132 ","pages":"Article 103431"},"PeriodicalIF":2.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wave MotionPub Date : 2024-10-16DOI: 10.1016/j.wavemoti.2024.103422
Didier Felbacq, Anthony Gourdin, Emmanuel Rousseau
{"title":"A single layer representation of the scattered field for multiple scattering problems","authors":"Didier Felbacq, Anthony Gourdin, Emmanuel Rousseau","doi":"10.1016/j.wavemoti.2024.103422","DOIUrl":"10.1016/j.wavemoti.2024.103422","url":null,"abstract":"<div><div>The scattering of scalar waves by a set of scatterers is considered. It is proven that the scattered field can be represented as an integral supported by any smooth surface enclosing the scatterers. This is a generalization of the series expansion over spherical harmonics and spherical Bessel functions for spherical geometries. More precisely, given a set of scatterers, the field scattered by any subset can be expressed as an integral over any smooth surface enclosing the given subset alone. It is then possible to solve the multiple scattering problem by using this integral representation instead of an expansion over spherical harmonics. This result is used to develop an extension of the Fast Multipole Method in order to deal with subsets that are not enclosed within non-intersecting balls.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"132 ","pages":"Article 103422"},"PeriodicalIF":2.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the lifespan of nonzero background solutions to a class of focusing nonlinear Schrödinger equations","authors":"Dirk Hennig , Nikos I. Karachalios , Dionyssios Mantzavinos , Dimitrios Mitsotakis","doi":"10.1016/j.wavemoti.2024.103419","DOIUrl":"10.1016/j.wavemoti.2024.103419","url":null,"abstract":"<div><div>The global solvability in time and the potential for blow-up of solutions to non-integrable focusing nonlinear Schrödinger equations with nonzero boundary conditions at infinity present challenges that are less explored and understood compared to the case of zero boundary conditions. In this work, we address these questions by establishing estimates on the lifespan of solutions to non-integrable equations involving a general class of nonlinearities. These estimates depend on the size of the initial data, the growth of the nonlinearity, and relevant quantities associated with the amplitude of the background. The estimates provide quantified upper bounds for the minimum guaranteed lifespan of solutions. Qualitatively, for small initial data and background, these upper bounds suggest long survival times consistent with global existence of solutions. On the other hand, for larger initial data and background, the estimates indicate the potential for the intriguing phenomenon of instantaneous collapse in finite time. These qualitative theoretical results are illustrated via numerical simulations. Furthermore, importantly, the numerical findings motivate the proof of improved theoretical upper bounds that provide excellent quantitative agreement with the order of the numerically identified lifespan of solutions.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"132 ","pages":"Article 103419"},"PeriodicalIF":2.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wave MotionPub Date : 2024-10-11DOI: 10.1016/j.wavemoti.2024.103421
Ben Wilks , Michael H. Meylan , Fabien Montiel , Sarah Wakes
{"title":"Generalised eigenfunction expansion and singularity expansion methods for canonical time-domain wave scattering problems","authors":"Ben Wilks , Michael H. Meylan , Fabien Montiel , Sarah Wakes","doi":"10.1016/j.wavemoti.2024.103421","DOIUrl":"10.1016/j.wavemoti.2024.103421","url":null,"abstract":"<div><div>The generalised eigenfunction expansion method (GEM) and the singularity expansion method (SEM) are applied to solve the canonical problem of wave scattering on an infinite stretched string in the time domain. The GEM, which is shown to be equivalent to d’Alembert’s formula when no scatterer is present, is also derived in the case of a point-mass scatterer coupled to a spring. The discrete GEM, which generalises the discrete Fourier transform, is shown to reduce to matrix multiplication. The SEM, which is derived from the Fourier transform and the residue theorem, is also applied to solve the problem of scattering by the mass–spring system. The GEM and SEM are also used to solve the problem of wave scattering by a mass positioned a fixed distance from an anchor point, which supports more complicated resonant behaviour.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"132 ","pages":"Article 103421"},"PeriodicalIF":2.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wave MotionPub Date : 2024-10-06DOI: 10.1016/j.wavemoti.2024.103420
E.I. Shifrin, I.M. Lebedev
{"title":"Natural frequencies of a Timoshenko beam with cracks","authors":"E.I. Shifrin, I.M. Lebedev","doi":"10.1016/j.wavemoti.2024.103420","DOIUrl":"10.1016/j.wavemoti.2024.103420","url":null,"abstract":"<div><div>A problem of calculating of natural frequencies of a Timoshenko beam weakened by a finite number of transverse open cracks is considered. The problem is solved for both known crack models. In one model every crack is simulated by a single, massless rotational spring. In the other model every crack is simulated by two massless springs (one extensional and another one rotational). An effective method for calculation of the natural frequencies of a vibrating beam with cracks, which was previously successfully applied to Euler-Bernoulli beams, is extended to the case of Timoshenko beam. The developed method makes it possible to significantly reduce the order of the determinant, the zeros of which are natural frequencies. Numerical examples are considered. The results are compared with the known where it is possible.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"131 ","pages":"Article 103420"},"PeriodicalIF":2.1,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wave MotionPub Date : 2024-09-29DOI: 10.1016/j.wavemoti.2024.103417
Jian Chang, Zhaqilao
{"title":"Rogue waves on the periodic background for a higher-order nonlinear Schrödinger–Maxwell–Bloch system","authors":"Jian Chang, Zhaqilao","doi":"10.1016/j.wavemoti.2024.103417","DOIUrl":"10.1016/j.wavemoti.2024.103417","url":null,"abstract":"<div><div>In this paper, we construct the rogue wave solutions on the background of the Jacobian elliptic functions for a higher-order nonlinear Schrödinger–Maxwell–Bloch system. The Jacobian elliptic function traveling wave solutions as the seed solutions are considered. Through the approach of the nonlinearization of the Lax pair and Darboux transformation method, the rogue waves and the line rogue waves on the Jacobian elliptic functions dn and cn background are obtained, respectively.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"131 ","pages":"Article 103417"},"PeriodicalIF":2.1,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wave MotionPub Date : 2024-09-19DOI: 10.1016/j.wavemoti.2024.103411
José M. Carcione , Jing Ba
{"title":"On the viscoelastic-electromagnetic-gravitational analogy","authors":"José M. Carcione , Jing Ba","doi":"10.1016/j.wavemoti.2024.103411","DOIUrl":"10.1016/j.wavemoti.2024.103411","url":null,"abstract":"<div><div>The analogy between electromagnetism and gravitation was achieved by linearizing the tensorial gravitational equations of general relativity and converting them into a vector form corresponding to Maxwell’s electromagnetic equations. On this basis, we use the equivalence with viscoelasticity and propose a theory of gravitational waves. We add a damping term to the differential equations, which is equivalent to Ohm’s law in electromagnetism and Maxwell’s viscosity in viscoelasticity, to describe the attenuation of the waves. The differential equations in viscoelasticity are those of cross-plane shear waves, commonly referred to as SH waves. A plane-wave analysis gives the phase velocity, the energy velocity, the quality factor and the attenuation factor of the field as well as the energy balance. To obtain these properties, we use the analogy with viscoelasticity; the properties of electromagnetic and gravitational waves are similar to those of shear waves. The presence of attenuation means that the transient field is generally a composition of inhomogeneous (non-uniform) plane waves, where the propagation and attenuation vectors do not point in the same direction and the phase velocity vector and the energy flux (energy velocity) are not collinear. The polarization of cross-plane field is linear and perpendicular to the propagation-attenuation plane, while the polarization of the field within the plane is elliptical. Transient wave fields in the space–time domain are analyzed with the Green function (in homogeneous media) and with a grid method (in heterogeneous media) based on the Fourier pseudospectral method for calculating the spatial derivatives and a Runge–Kutta scheme of order 4 for the time stepping. In the examples, wave propagation at the Sun–Earth and Earth–Moon distances using quadrupole sources is considered in comparison to viscoelastic waves. The Green and grid solutions are compared to test the latter algorithm. Finally, an example of propagation in heterogeneous media is presented.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"131 ","pages":"Article 103411"},"PeriodicalIF":2.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}