格上Nagumo方程行进锋的传播失效

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
José Fernando Bustamante-Castañeda , Gustavo Cruz-Pacheco
{"title":"格上Nagumo方程行进锋的传播失效","authors":"José Fernando Bustamante-Castañeda ,&nbsp;Gustavo Cruz-Pacheco","doi":"10.1016/j.wavemoti.2024.103483","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we study the phenomenon of propagation failure for fronts in a bistable reaction–diffusion equation on a lattice in one and two dimensions. Using asymptotic methods and modulation theory, we approximate the anchoring region in the parameter space defined by the coupling coefficient and the bistability parameter. For the one-dimensional case, modulation theory yields a periodic, time-dependent velocity of the wavefront, governed by a Peierls–Nabarro potential. We provide a simple explanation for a numerical observation made in previous work by Mallet-Paret, Hoffman and Mallet-Paret (2010), regarding the fact that a stationary vertical wavefront begins to advance when its direction is perturbed. We also present numerical evidence demonstrating the accuracy of our approximations.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"134 ","pages":"Article 103483"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propagation failure for traveling fronts of the Nagumo equation on a lattice\",\"authors\":\"José Fernando Bustamante-Castañeda ,&nbsp;Gustavo Cruz-Pacheco\",\"doi\":\"10.1016/j.wavemoti.2024.103483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we study the phenomenon of propagation failure for fronts in a bistable reaction–diffusion equation on a lattice in one and two dimensions. Using asymptotic methods and modulation theory, we approximate the anchoring region in the parameter space defined by the coupling coefficient and the bistability parameter. For the one-dimensional case, modulation theory yields a periodic, time-dependent velocity of the wavefront, governed by a Peierls–Nabarro potential. We provide a simple explanation for a numerical observation made in previous work by Mallet-Paret, Hoffman and Mallet-Paret (2010), regarding the fact that a stationary vertical wavefront begins to advance when its direction is perturbed. We also present numerical evidence demonstrating the accuracy of our approximations.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"134 \",\"pages\":\"Article 103483\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524002130\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524002130","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一维和二维晶格上双稳态反应扩散方程中锋面的传播失效现象。利用渐近方法和调制理论,在由耦合系数和双稳性参数定义的参数空间中逼近了锚定区域。在一维情况下,调制理论产生了一个周期的、随时间变化的波前速度,由佩尔斯-纳巴罗势控制。我们对Mallet-Paret、Hoffman和Mallet-Paret(2010)在之前的工作中所做的数值观测提供了一个简单的解释,即当其方向受到干扰时,静止的垂直波前开始前进。我们还提供了数值证据来证明我们的近似的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Propagation failure for traveling fronts of the Nagumo equation on a lattice
In this work, we study the phenomenon of propagation failure for fronts in a bistable reaction–diffusion equation on a lattice in one and two dimensions. Using asymptotic methods and modulation theory, we approximate the anchoring region in the parameter space defined by the coupling coefficient and the bistability parameter. For the one-dimensional case, modulation theory yields a periodic, time-dependent velocity of the wavefront, governed by a Peierls–Nabarro potential. We provide a simple explanation for a numerical observation made in previous work by Mallet-Paret, Hoffman and Mallet-Paret (2010), regarding the fact that a stationary vertical wavefront begins to advance when its direction is perturbed. We also present numerical evidence demonstrating the accuracy of our approximations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信