Wave Motion最新文献

筛选
英文 中文
Constitutive modelling and wave propagation through a class of anisotropic elastic metamaterials with local rotation 一类具有局部旋转的各向异性弹性超材料的结构建模和波传播
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-10-28 DOI: 10.1016/j.wavemoti.2024.103432
{"title":"Constitutive modelling and wave propagation through a class of anisotropic elastic metamaterials with local rotation","authors":"","doi":"10.1016/j.wavemoti.2024.103432","DOIUrl":"10.1016/j.wavemoti.2024.103432","url":null,"abstract":"<div><div>Elastic metamaterials are typically periodic materials possessing unit cells endowed with engineered architecture much smaller than the typical phenomenological length scale. The development of continuum models capable of accurately representing the effects of this aforementioned architecture is extremely challenging, and hence a sparsely developed area. This paper develops a novel 2-D continuum model capable of capturing the dynamic behaviour of a class of anisotropic elastic metamaterials with local rotational elements in the long wavelength limit. A constitutive relation incorporating these local rotational effects is proposed, and ratified using a representative discrete model using linear Hookean springs and identical rigid disks. The new continuum model is used to generate a dispersion relation for harmonic plane waves propagating in an arbitrary direction, which is subsequently compared to the dispersion behaviour of the original discrete model. The general behaviour of this continuum when subjected to 2-D planar harmonic wave propagation in the anisotropic medium is then analysed, with specific attention given to the effect of material anisotropy and wave propagation direction. This work is the first of its kind to create a new continuum model of a class of anisotropic elastic metamaterials with local rotational effects.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On peridynamic acoustics 关于周动声学
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-10-28 DOI: 10.1016/j.wavemoti.2024.103429
{"title":"On peridynamic acoustics","authors":"","doi":"10.1016/j.wavemoti.2024.103429","DOIUrl":"10.1016/j.wavemoti.2024.103429","url":null,"abstract":"<div><div>We consider a nonlocal (peridynamic) version of the classical forced wave equation. This scalar three-dimensional equation contains a weight function (the “micromodulus”) and a length parameter (the “horizon”) that have to be selected. We investigate various properties (the locality limit as the horizon shrinks, plane waves and group velocity), paying attention to how these properties depend on the choice of the micromodulus. We solve the forced peridynamic equation in the static case (avoiding divergent integrals) and in the time-harmonic case (with a radiation condition, when needed).</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurate computation of scattering poles of acoustic obstacles with impedance boundary conditions 带阻抗边界条件的声学障碍物散射极点的精确计算
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-10-24 DOI: 10.1016/j.wavemoti.2024.103425
{"title":"Accurate computation of scattering poles of acoustic obstacles with impedance boundary conditions","authors":"","doi":"10.1016/j.wavemoti.2024.103425","DOIUrl":"10.1016/j.wavemoti.2024.103425","url":null,"abstract":"<div><div>We propose a computation method for scattering poles of impedance obstacles. Boundary integral equations are used to formulate the problem. It is shown that the scattering poles are the eigenvalues of some integral operator. Then we employ the Nyström method to discretize the integral operator and obtain a nonlinear matrix eigenvalue problem. The eigenvalues are computed using a multistep parallel spectral indicator method. Numerical examples demonstrate the high accuracy of the proposed method and can serve as the benchmarks. Our study provides a practical approach and can be extended to other scattering problems. This paper continues our previous study on the computation method for scattering poles of sound-soft obstacles.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Derivation of weakly interacting lumps for the (2+1)-dimensional Yu–Toda–Sasa–Fukuyama equation via degeneracy of lump chains 通过块链的退化性推导 (2+1)-dimensional Yu-Toda-Sasa-Fukuyama 公式的弱相互作用块体
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-10-22 DOI: 10.1016/j.wavemoti.2024.103423
{"title":"Derivation of weakly interacting lumps for the (2+1)-dimensional Yu–Toda–Sasa–Fukuyama equation via degeneracy of lump chains","authors":"","doi":"10.1016/j.wavemoti.2024.103423","DOIUrl":"10.1016/j.wavemoti.2024.103423","url":null,"abstract":"<div><div>This paper introduces two distinct pathways for degenerating normally interacting lump chains into weakly interacting lump waves for Yu–Toda–Sasa–Fukuyama equation, which will enrich the correlation between lump chains and weakly interacting lump waves. The first pathway involves letting the periods of <span><math><mi>M</mi></math></span> similarly-velocity lump chains approach infinity directly. The second pathway first transforms <span><math><mi>M</mi></math></span> normally interacting lump chains into weakly interacting lump chains with similar dynamic behaviors. Then, by allowing their periods to approach infinity, <span><math><mfrac><mrow><mi>M</mi><mfenced><mrow><mi>M</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> weakly interacting lump waves are produced. Distance between weakly interacting lump chains in this equation is proportional to <span><math><mrow><mo>ln</mo><mo>|</mo><mi>t</mi><mo>|</mo></mrow></math></span>, while between weakly interacting lump waves is proportional to <span><math><mroot><mrow><mo>|</mo><mi>t</mi><mo>|</mo></mrow><mrow><mn>3</mn></mrow></mroot></math></span>. These findings will contribute valuable theoretical insights to the study of wave theory, ocean science and related disciplines.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compactons in a class of doubly sublinear Gardner equations 一类双次线性加德纳方程中的紧凑子
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-10-22 DOI: 10.1016/j.wavemoti.2024.103427
{"title":"Compactons in a class of doubly sublinear Gardner equations","authors":"","doi":"10.1016/j.wavemoti.2024.103427","DOIUrl":"10.1016/j.wavemoti.2024.103427","url":null,"abstract":"<div><div>We introduce and study a class of doubly sublinear Gardner equations <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>F</mi><msub><mrow><mrow><mo>(</mo><mi>u</mi><mo>;</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn><mi>x</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span> where <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>;</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>n</mi></mrow></msup><mo>−</mo><msub><mrow><mi>κ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msup></mrow></math></span>, which for <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>n</mi></mrow></math></span> induce solitons and in the doubly sublinear cases wherein <span><math><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>&lt;</mo><mi>n</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>, <em>bi-directional</em> compactons propagating in either direction. Their emergence, evolution, chase and head-on interactions are studied.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dynamic behaviors between double-hump solitons in birefringent fibers 双折射光纤中双驼峰孤子之间的动态行为
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-10-22 DOI: 10.1016/j.wavemoti.2024.103426
{"title":"The dynamic behaviors between double-hump solitons in birefringent fibers","authors":"","doi":"10.1016/j.wavemoti.2024.103426","DOIUrl":"10.1016/j.wavemoti.2024.103426","url":null,"abstract":"<div><div>In this paper, we research the fractional coupled Hirota equations with variable coefficients describing the collisions of two waves in deep oceans and the propagation of ultrashort light pulses in birefringent fibers and successfully acquire the double-hump one-soliton, two-solitons and <em>N</em>-solitons solutions via the Hirota bilinear method. At the same time, the Bäcklund transformation and the corresponding soliton solutions are also obtained. Based on the precise forms of the solitons solutions, we gain double-hump solitons images with different shapes including U-shape, V-shape and wave-type by assigning proper functions to the group velocity dispersion and the third-order dispersion and analyze the interaction dynamics of double-hump solitons. It is worth noting that the Hirota bilinear operators involved here are fractional rather than integer, which has never appeared in previous literatures.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Test of the relation between temporal and spatial Q by Knopoff et al. Knopoff 等人对时间和空间 Q 之间关系的测试。
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-10-22 DOI: 10.1016/j.wavemoti.2024.103424
{"title":"Test of the relation between temporal and spatial Q by Knopoff et al.","authors":"","doi":"10.1016/j.wavemoti.2024.103424","DOIUrl":"10.1016/j.wavemoti.2024.103424","url":null,"abstract":"<div><div>The quality factor is a dimensionless measure of the energy loss per cycle of wave modes in an attenuation medium. Accurate measurement is important in various fields, from seismological studies to detect zones of partial melting to the geophysics of reservoirs to study rock properties such as porosity, fluid properties and saturation and permeability. In seismology, the quality factors measured for normal (standing) modes and propagating waves differ, as well those of equivalent experiments based on resonant rods and ultrasonic pulses performed in the laboratory. These measurements result in temporal and spatial quality factors respectively. A relationship between these two different quality factors and between the corresponding attenuation factors was proposed by Knopoff et al. sixty years ago. The conversion factor is basically the ratio between the phase velocity and the group velocity, while for the attenuation factor is the group velocity. We test these relations, which hold for low-loss solids, for body waves, using a Kelvin–Voigt rheology and a constant <span><math><mi>Q</mi></math></span> model, which provide explicit expressions of the temporal and spatial quality factors and velocities involved in these relations. The proposed theory provides the basis for a complete characterization of temporal and spatial quality factors and velocity dispersion based on arbitrary stress–strain relationships.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A single layer representation of the scattered field for multiple scattering problems 多散射问题的散射场单层表示法
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-10-16 DOI: 10.1016/j.wavemoti.2024.103422
{"title":"A single layer representation of the scattered field for multiple scattering problems","authors":"","doi":"10.1016/j.wavemoti.2024.103422","DOIUrl":"10.1016/j.wavemoti.2024.103422","url":null,"abstract":"<div><div>The scattering of scalar waves by a set of scatterers is considered. It is proven that the scattered field can be represented as an integral supported by any smooth surface enclosing the scatterers. This is a generalization of the series expansion over spherical harmonics and spherical Bessel functions for spherical geometries. More precisely, given a set of scatterers, the field scattered by any subset can be expressed as an integral over any smooth surface enclosing the given subset alone. It is then possible to solve the multiple scattering problem by using this integral representation instead of an expansion over spherical harmonics. This result is used to develop an extension of the Fast Multipole Method in order to deal with subsets that are not enclosed within non-intersecting balls.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the lifespan of nonzero background solutions to a class of focusing nonlinear Schrödinger equations 论一类聚焦非线性薛定谔方程非零背景解的寿命
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-10-11 DOI: 10.1016/j.wavemoti.2024.103419
{"title":"On the lifespan of nonzero background solutions to a class of focusing nonlinear Schrödinger equations","authors":"","doi":"10.1016/j.wavemoti.2024.103419","DOIUrl":"10.1016/j.wavemoti.2024.103419","url":null,"abstract":"<div><div>The global solvability in time and the potential for blow-up of solutions to non-integrable focusing nonlinear Schrödinger equations with nonzero boundary conditions at infinity present challenges that are less explored and understood compared to the case of zero boundary conditions. In this work, we address these questions by establishing estimates on the lifespan of solutions to non-integrable equations involving a general class of nonlinearities. These estimates depend on the size of the initial data, the growth of the nonlinearity, and relevant quantities associated with the amplitude of the background. The estimates provide quantified upper bounds for the minimum guaranteed lifespan of solutions. Qualitatively, for small initial data and background, these upper bounds suggest long survival times consistent with global existence of solutions. On the other hand, for larger initial data and background, the estimates indicate the potential for the intriguing phenomenon of instantaneous collapse in finite time. These qualitative theoretical results are illustrated via numerical simulations. Furthermore, importantly, the numerical findings motivate the proof of improved theoretical upper bounds that provide excellent quantitative agreement with the order of the numerically identified lifespan of solutions.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalised eigenfunction expansion and singularity expansion methods for canonical time-domain wave scattering problems 典型时域波散射问题的广义特征函数展开和奇异性展开方法
IF 2.1 3区 物理与天体物理
Wave Motion Pub Date : 2024-10-11 DOI: 10.1016/j.wavemoti.2024.103421
{"title":"Generalised eigenfunction expansion and singularity expansion methods for canonical time-domain wave scattering problems","authors":"","doi":"10.1016/j.wavemoti.2024.103421","DOIUrl":"10.1016/j.wavemoti.2024.103421","url":null,"abstract":"<div><div>The generalised eigenfunction expansion method (GEM) and the singularity expansion method (SEM) are applied to solve the canonical problem of wave scattering on an infinite stretched string in the time domain. The GEM, which is shown to be equivalent to d’Alembert’s formula when no scatterer is present, is also derived in the case of a point-mass scatterer coupled to a spring. The discrete GEM, which generalises the discrete Fourier transform, is shown to reduce to matrix multiplication. The SEM, which is derived from the Fourier transform and the residue theorem, is also applied to solve the problem of scattering by the mass–spring system. The GEM and SEM are also used to solve the problem of wave scattering by a mass positioned a fixed distance from an anchor point, which supports more complicated resonant behaviour.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信