Yi-Lin Tian , Wen-Yuan Li , Nong-Sen Li , Rui-Gang Zhang , Ji-Feng Cui
{"title":"(3+1)维变系数势Yu-Toda-Sasa-Fukuyama方程的多异常波动力学","authors":"Yi-Lin Tian , Wen-Yuan Li , Nong-Sen Li , Rui-Gang Zhang , Ji-Feng Cui","doi":"10.1016/j.wavemoti.2025.103604","DOIUrl":null,"url":null,"abstract":"<div><div>In the text, we deliberate the (3+1)-dimensional variable-coefficient potential Yu-Toda-Sasa-Fukuyama equation (YTST) in an elastic (or in a two-layer-liquid) medium, and its bilinear form is derived by Bell polynomials. Via symbolic computation method and Hirota bilinear form, the first-order, second-order and third-order rogue wave solutions are presented, involving lump-type, lump-kink-type, periodic and line rogue waves. The effect of variable coefficient functions and parameter values of the center on the shapes and peak numbers of rogue waves is demonstrated and explained in terms of three-dimensional graphs and contours. The appearances bearing fission and propagation in the periodic background are duly traced. The novel outcomes fill the gap in rogue wave solutions for this model, which furnish great awareness going deeply into variable coefficient equations.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103604"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of multiple rogue waves for (3+1)-dimensional variable-coefficient potential Yu-Toda-Sasa-Fukuyama equation\",\"authors\":\"Yi-Lin Tian , Wen-Yuan Li , Nong-Sen Li , Rui-Gang Zhang , Ji-Feng Cui\",\"doi\":\"10.1016/j.wavemoti.2025.103604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the text, we deliberate the (3+1)-dimensional variable-coefficient potential Yu-Toda-Sasa-Fukuyama equation (YTST) in an elastic (or in a two-layer-liquid) medium, and its bilinear form is derived by Bell polynomials. Via symbolic computation method and Hirota bilinear form, the first-order, second-order and third-order rogue wave solutions are presented, involving lump-type, lump-kink-type, periodic and line rogue waves. The effect of variable coefficient functions and parameter values of the center on the shapes and peak numbers of rogue waves is demonstrated and explained in terms of three-dimensional graphs and contours. The appearances bearing fission and propagation in the periodic background are duly traced. The novel outcomes fill the gap in rogue wave solutions for this model, which furnish great awareness going deeply into variable coefficient equations.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"139 \",\"pages\":\"Article 103604\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212525001155\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525001155","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Dynamics of multiple rogue waves for (3+1)-dimensional variable-coefficient potential Yu-Toda-Sasa-Fukuyama equation
In the text, we deliberate the (3+1)-dimensional variable-coefficient potential Yu-Toda-Sasa-Fukuyama equation (YTST) in an elastic (or in a two-layer-liquid) medium, and its bilinear form is derived by Bell polynomials. Via symbolic computation method and Hirota bilinear form, the first-order, second-order and third-order rogue wave solutions are presented, involving lump-type, lump-kink-type, periodic and line rogue waves. The effect of variable coefficient functions and parameter values of the center on the shapes and peak numbers of rogue waves is demonstrated and explained in terms of three-dimensional graphs and contours. The appearances bearing fission and propagation in the periodic background are duly traced. The novel outcomes fill the gap in rogue wave solutions for this model, which furnish great awareness going deeply into variable coefficient equations.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.