(3+1)维变系数势Yu-Toda-Sasa-Fukuyama方程的多异常波动力学

IF 2.5 3区 物理与天体物理 Q2 ACOUSTICS
Yi-Lin Tian , Wen-Yuan Li , Nong-Sen Li , Rui-Gang Zhang , Ji-Feng Cui
{"title":"(3+1)维变系数势Yu-Toda-Sasa-Fukuyama方程的多异常波动力学","authors":"Yi-Lin Tian ,&nbsp;Wen-Yuan Li ,&nbsp;Nong-Sen Li ,&nbsp;Rui-Gang Zhang ,&nbsp;Ji-Feng Cui","doi":"10.1016/j.wavemoti.2025.103604","DOIUrl":null,"url":null,"abstract":"<div><div>In the text, we deliberate the (3+1)-dimensional variable-coefficient potential Yu-Toda-Sasa-Fukuyama equation (YTST) in an elastic (or in a two-layer-liquid) medium, and its bilinear form is derived by Bell polynomials. Via symbolic computation method and Hirota bilinear form, the first-order, second-order and third-order rogue wave solutions are presented, involving lump-type, lump-kink-type, periodic and line rogue waves. The effect of variable coefficient functions and parameter values of the center on the shapes and peak numbers of rogue waves is demonstrated and explained in terms of three-dimensional graphs and contours. The appearances bearing fission and propagation in the periodic background are duly traced. The novel outcomes fill the gap in rogue wave solutions for this model, which furnish great awareness going deeply into variable coefficient equations.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103604"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of multiple rogue waves for (3+1)-dimensional variable-coefficient potential Yu-Toda-Sasa-Fukuyama equation\",\"authors\":\"Yi-Lin Tian ,&nbsp;Wen-Yuan Li ,&nbsp;Nong-Sen Li ,&nbsp;Rui-Gang Zhang ,&nbsp;Ji-Feng Cui\",\"doi\":\"10.1016/j.wavemoti.2025.103604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the text, we deliberate the (3+1)-dimensional variable-coefficient potential Yu-Toda-Sasa-Fukuyama equation (YTST) in an elastic (or in a two-layer-liquid) medium, and its bilinear form is derived by Bell polynomials. Via symbolic computation method and Hirota bilinear form, the first-order, second-order and third-order rogue wave solutions are presented, involving lump-type, lump-kink-type, periodic and line rogue waves. The effect of variable coefficient functions and parameter values of the center on the shapes and peak numbers of rogue waves is demonstrated and explained in terms of three-dimensional graphs and contours. The appearances bearing fission and propagation in the periodic background are duly traced. The novel outcomes fill the gap in rogue wave solutions for this model, which furnish great awareness going deeply into variable coefficient equations.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"139 \",\"pages\":\"Article 103604\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212525001155\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525001155","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了弹性(或两层液体)介质中的(3+1)维变系数势Yu-Toda-Sasa-Fukuyama方程(YTST),并用贝尔多项式推导了其双线性形式。通过符号计算方法和Hirota双线性形式,给出了一阶、二阶和三阶异常波的解,包括块状异常波、块状异常波、周期异常波和直线异常波。用三维图形和等高线说明了变系数函数和中心参数值对异常浪形状和峰数的影响。在周期性背景中,裂变和传播的现象被适当地记录下来。这些新结果填补了该模型的异常波解的空白,为深入研究变系数方程提供了很大的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of multiple rogue waves for (3+1)-dimensional variable-coefficient potential Yu-Toda-Sasa-Fukuyama equation
In the text, we deliberate the (3+1)-dimensional variable-coefficient potential Yu-Toda-Sasa-Fukuyama equation (YTST) in an elastic (or in a two-layer-liquid) medium, and its bilinear form is derived by Bell polynomials. Via symbolic computation method and Hirota bilinear form, the first-order, second-order and third-order rogue wave solutions are presented, involving lump-type, lump-kink-type, periodic and line rogue waves. The effect of variable coefficient functions and parameter values of the center on the shapes and peak numbers of rogue waves is demonstrated and explained in terms of three-dimensional graphs and contours. The appearances bearing fission and propagation in the periodic background are duly traced. The novel outcomes fill the gap in rogue wave solutions for this model, which furnish great awareness going deeply into variable coefficient equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信