所有一、二阶(2+1)维非线性波动方程均由理想流体模型的欧拉方程导出,并给出了它们的行波解

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
Piotr Rozmej , Anna Karczewska
{"title":"所有一、二阶(2+1)维非线性波动方程均由理想流体模型的欧拉方程导出,并给出了它们的行波解","authors":"Piotr Rozmej ,&nbsp;Anna Karczewska","doi":"10.1016/j.wavemoti.2024.103477","DOIUrl":null,"url":null,"abstract":"<div><div>We review the (2+1)-dimensional nonlinear wave equations we recently derived from the ideal fluid model. These are extensions of the KdV, fifth-order KdV, Gardner, extended KdV and extended KP equations into two spatial dimensions. We discuss analytical solutions to these equations in the form of traveling waves. All these solutions, soliton, cnoidal, and superposition ones, are analogous to solutions of the corresponding (1+1)-dimensional equations. The complete (2+1)-dimensional fifth-order KdV equation, (2+1)-dimensional Gardner equation, and their soliton solutions are derived here for the first time.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"134 ","pages":"Article 103477"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All first- and second-order (2+1)-dimensional nonlinear wave equations derived from the Euler equations for an ideal fluid model and their traveling wave solutions\",\"authors\":\"Piotr Rozmej ,&nbsp;Anna Karczewska\",\"doi\":\"10.1016/j.wavemoti.2024.103477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We review the (2+1)-dimensional nonlinear wave equations we recently derived from the ideal fluid model. These are extensions of the KdV, fifth-order KdV, Gardner, extended KdV and extended KP equations into two spatial dimensions. We discuss analytical solutions to these equations in the form of traveling waves. All these solutions, soliton, cnoidal, and superposition ones, are analogous to solutions of the corresponding (1+1)-dimensional equations. The complete (2+1)-dimensional fifth-order KdV equation, (2+1)-dimensional Gardner equation, and their soliton solutions are derived here for the first time.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"134 \",\"pages\":\"Article 103477\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524002075\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524002075","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们回顾了我们最近从理想流体模型中导出的(2+1)维非线性波动方程。这些是KdV的扩展,五阶KdV, Gardner,扩展KdV和扩展KP方程到两个空间维度。我们以行波的形式讨论了这些方程的解析解。所有这些解,孤子解、余弦解和叠加解,都类似于相应的(1+1)维方程的解。本文首次导出了完整的(2+1)维五阶KdV方程、(2+1)维Gardner方程及其孤子解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
All first- and second-order (2+1)-dimensional nonlinear wave equations derived from the Euler equations for an ideal fluid model and their traveling wave solutions
We review the (2+1)-dimensional nonlinear wave equations we recently derived from the ideal fluid model. These are extensions of the KdV, fifth-order KdV, Gardner, extended KdV and extended KP equations into two spatial dimensions. We discuss analytical solutions to these equations in the form of traveling waves. All these solutions, soliton, cnoidal, and superposition ones, are analogous to solutions of the corresponding (1+1)-dimensional equations. The complete (2+1)-dimensional fifth-order KdV equation, (2+1)-dimensional Gardner equation, and their soliton solutions are derived here for the first time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信