周期性背景上的克雷克尔-曼纳-莫尔系统的异常波

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
Chun Chang, Zhaqilao
{"title":"周期性背景上的克雷克尔-曼纳-莫尔系统的异常波","authors":"Chun Chang,&nbsp;Zhaqilao","doi":"10.1016/j.wavemoti.2025.103545","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we summarize the construction of rogue wave solutions for the Kraenkel–Manna–Merle system on the background of Jacobian elliptic dn- and cn-periodic waves. Our approach involved nonlinearizing the Lax pair to derive eigenvalues and eigenfunctions, introducing periodic and non-periodic solutions of the Lax pair, and utilizing the Darboux transformation to establish potential relations. Consequently, we obtain periodic rogue wave solutions and conducted a nonlinear dynamics analysis, revealing significant insights into the behavior of the Kraenkel–Manna–Merle system. A rogue wave on a skewed periodic wave background is obtained which is a novel phenomenon in the nonlinear system.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"137 ","pages":"Article 103545"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rogue waves of the Kraenkel–Manna–Merle system on a periodic background\",\"authors\":\"Chun Chang,&nbsp;Zhaqilao\",\"doi\":\"10.1016/j.wavemoti.2025.103545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we summarize the construction of rogue wave solutions for the Kraenkel–Manna–Merle system on the background of Jacobian elliptic dn- and cn-periodic waves. Our approach involved nonlinearizing the Lax pair to derive eigenvalues and eigenfunctions, introducing periodic and non-periodic solutions of the Lax pair, and utilizing the Darboux transformation to establish potential relations. Consequently, we obtain periodic rogue wave solutions and conducted a nonlinear dynamics analysis, revealing significant insights into the behavior of the Kraenkel–Manna–Merle system. A rogue wave on a skewed periodic wave background is obtained which is a novel phenomenon in the nonlinear system.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"137 \",\"pages\":\"Article 103545\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212525000563\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525000563","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文总结了在雅可比椭圆周期波和正周期波背景下Kraenkel-Manna-Merle系统异常波解的构造。我们的方法包括非线性化Lax对来推导特征值和特征函数,引入Lax对的周期解和非周期解,并利用达布变换来建立势关系。因此,我们获得了周期异常波解并进行了非线性动力学分析,揭示了对Kraenkel-Manna-Merle系统行为的重要见解。在斜周期波背景上得到了一个异常波,这是非线性系统中的一种新现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rogue waves of the Kraenkel–Manna–Merle system on a periodic background
In this paper, we summarize the construction of rogue wave solutions for the Kraenkel–Manna–Merle system on the background of Jacobian elliptic dn- and cn-periodic waves. Our approach involved nonlinearizing the Lax pair to derive eigenvalues and eigenfunctions, introducing periodic and non-periodic solutions of the Lax pair, and utilizing the Darboux transformation to establish potential relations. Consequently, we obtain periodic rogue wave solutions and conducted a nonlinear dynamics analysis, revealing significant insights into the behavior of the Kraenkel–Manna–Merle system. A rogue wave on a skewed periodic wave background is obtained which is a novel phenomenon in the nonlinear system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信