Biomolecular NMR Assignments最新文献

筛选
英文 中文
1H, 13C, and 15N resonance assignments of the La Motif of the human La-related protein 1 人类 La 相关蛋白 1 的 La Motif 的 1H、13C 和 15N 共振赋值
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-05-01 DOI: 10.1007/s12104-024-10176-4
Benjamin C. Smith, Robert Silvers
{"title":"1H, 13C, and 15N resonance assignments of the La Motif of the human La-related protein 1","authors":"Benjamin C. Smith,&nbsp;Robert Silvers","doi":"10.1007/s12104-024-10176-4","DOIUrl":"10.1007/s12104-024-10176-4","url":null,"abstract":"<div><p>Human La-related protein 1 (HsLARP1) is involved in post-transcriptional regulation of certain 5ʹ terminal oligopyrimidine (5ʹTOP) mRNAs as well as other mRNAs and binds to both the 5’TOP motif and the 3’-poly(A) tail of certain mRNAs. HsLARP1 is heavily involved in cell proliferation, cell cycle defects, and cancer, where HsLARP1 is significantly upregulated in malignant cells and tissues. Like all LARPs, HsLARP1 contains a folded RNA binding domain, the La motif (LaM). Our current understanding of post-transcriptional regulation that emanates from the intricate molecular framework of HsLARP1 is currently limited to small snapshots, obfuscating our understanding of the full picture on HsLARP1 functionality in post-transcriptional events. Here, we present the nearly complete resonance assignment of the LaM of HsLARP1, providing a significant platform for future NMR spectroscopic studies. </p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"111 - 118"},"PeriodicalIF":0.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 15N and 13C resonance backbone and side-chain assignments and secondary structure determination of the BRCT domain of Mtb LigA Mtb LigA 的 BRCT 结构域的 1H、15N 和 13C 共振骨架和侧链分配及二级结构确定
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-04-30 DOI: 10.1007/s12104-024-10175-5
Jayanti Vaishnav, Ravi Sankar Ampapathi
{"title":"1H, 15N and 13C resonance backbone and side-chain assignments and secondary structure determination of the BRCT domain of Mtb LigA","authors":"Jayanti Vaishnav,&nbsp;Ravi Sankar Ampapathi","doi":"10.1007/s12104-024-10175-5","DOIUrl":"10.1007/s12104-024-10175-5","url":null,"abstract":"<div><p>The BRCA1 carboxyl-terminal (BRCT) domain, an evolutionarily conserved structural motif, is ubiquitous in a multitude of proteins spanning prokaryotic and eukaryotic organisms. In <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>), BRCT domain plays a pivotal role in the catalytic activity of the NAD+-dependent DNA ligase (LigA). LigA is pivotal in DNA replication, catalyzing the formation of phosphodiester bonds in Okazaki fragments and repairing single-strand breaks in damaged DNA, essential for the survival of <i>Mtb</i>. Structural and functional aspects of LigA unveil its character as a highly modular protein, undergoing substantial conformational changes during its catalytic cycle. Although the BRCT domain of <i>Mtb</i> LigA plays an essential role in DNA binding and protein–protein interactions, the precise mechanism of action remains poorly understood. Unravelling the structure of the BRCT domain holds the promise of advancing our understanding of this pivotal domain. Additionally, it will facilitate further exploration of the protein–protein interactions and enhance our understanding of inter domain interactions within LigA, specifically between BRCT and the Adenylation domain. In this study, we demonstrate the overexpression of the BRCT domain of <i>Mtb</i> LigA and conduct its analysis using solution NMR spectroscopy, revealing a well-folded structure and we present the nearly complete chemical shift assignments of both backbone and sidechains. In addition, a secondary structure prediction by TALOS N predicts BRCT consisting of 3 <i>α</i>-helices and 4 <i>β</i>-sheets, closely resembling the typical structural topology of most BRCT domains.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"105 - 109"},"PeriodicalIF":0.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical shift assignment of dsRBD1 and dsRBD2 of Arabidopsis thaliana DRB3, an essential protein involved in RNAi-mediated antiviral defense 拟南芥 DRB3 的 dsRBD1 和 dsRBD2 的化学位移分配,DRB3 是参与 RNAi 介导的抗病毒防御的重要蛋白质。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-04-26 DOI: 10.1007/s12104-024-10174-6
Jaydeep Paul, Mandar V. Deshmukh
{"title":"Chemical shift assignment of dsRBD1 and dsRBD2 of Arabidopsis thaliana DRB3, an essential protein involved in RNAi-mediated antiviral defense","authors":"Jaydeep Paul,&nbsp;Mandar V. Deshmukh","doi":"10.1007/s12104-024-10174-6","DOIUrl":"10.1007/s12104-024-10174-6","url":null,"abstract":"<div><p>As sessile organisms, plants need to counteract different biotic and abiotic stresses to survive. RNA interference provides natural immunity against various plant pathogens, especially against viral infections via inhibition of viral genome replication or translation. In plants, DRB3, a multi-domain protein containing two N-terminal dsRNA binding domains (dsRBD), plays a vital role in RNA-directed DNA methylation of the geminiviral genome. Additionally, DRB3 arrests the replication of the viral genome in the viral replication complex of RNA viruses through a mechanism that has yet to be fully deciphered. Therefore, as a first step towards exploring the structural details of DRB3, we present a nearly complete backbone and side chain assignment of the two N-terminal dsRBD domains.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"99 - 104"},"PeriodicalIF":0.8,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140652795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 13C, and 15N backbone and methyl group resonance assignments of ricin toxin A subunit 蓖麻毒素 A 亚基的 1H、13C 和 15N 骨架和甲基共振赋值
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-04-20 DOI: 10.1007/s12104-024-10172-8
Shibani Bhattacharya, Tassadite Dahmane, Michael J. Goger, Michael J. Rudolph, Nilgun E. Tumer
{"title":"1H, 13C, and 15N backbone and methyl group resonance assignments of ricin toxin A subunit","authors":"Shibani Bhattacharya,&nbsp;Tassadite Dahmane,&nbsp;Michael J. Goger,&nbsp;Michael J. Rudolph,&nbsp;Nilgun E. Tumer","doi":"10.1007/s12104-024-10172-8","DOIUrl":"10.1007/s12104-024-10172-8","url":null,"abstract":"<div><p>Ricin is a potent plant toxin that targets the eukaryotic ribosome by depurinating an adenine from the sarcin-ricin loop (SRL), a highly conserved stem-loop of the rRNA. As a category-B agent for bioterrorism it is a prime target for therapeutic intervention with antibodies and enzyme blocking inhibitors since no effective therapy exists for ricin. Ricin toxin A subunit (RTA) depurinates the SRL by binding to the P-stalk proteins at a remote site. Stimulation of the <i>N</i>-glycosidase activity of RTA by the P-stalk proteins has been studied extensively by biochemical methods and by X-ray crystallography. The current understanding of RTA’s depurination mechanism relies exclusively on X-ray structures of the enzyme in the free state and complexed with transition state analogues. To date we have sparse evidence of conformational dynamics and allosteric regulation of RTA activity that can be exploited in the rational design of inhibitors. Thus, our primary goal here is to apply solution NMR techniques to probe the residue specific structural and dynamic coupling active in RTA as a prerequisite to understand the functional implications of an allosteric network. In this report we present <i>de novo</i> sequence specific amide and sidechain methyl chemical shift assignments of the 267 residue RTA in the free state and in complex with an 11-residue peptide (P11) representing the identical C-terminal sequence of the ribosomal P-stalk proteins. These assignments will facilitate future studies detailing the propagation of binding induced conformational changes in RTA complexed with inhibitors, antibodies, and biologically relevant targets.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"85 - 91"},"PeriodicalIF":0.8,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-024-10172-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140624141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solution NMR chemical shift assignment of apo and molybdate-bound ModA at two pHs 溶液核磁共振化学位移在两种 pH 值下的蛋白结合型和钼酸结合型 ModA 的分配
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-04-20 DOI: 10.1007/s12104-024-10173-7
Hiep LD Nguyen, Karin A. Crowhurst
{"title":"Solution NMR chemical shift assignment of apo and molybdate-bound ModA at two pHs","authors":"Hiep LD Nguyen,&nbsp;Karin A. Crowhurst","doi":"10.1007/s12104-024-10173-7","DOIUrl":"10.1007/s12104-024-10173-7","url":null,"abstract":"<div><p>ModA is a soluble periplasmic molybdate-binding protein found in most gram-negative bacteria. It is part of the ABC transporter complex ModABC that moves molybdenum into the cytoplasm, to be used by enzymes that carry out various redox reactions. Since there is no clear analog for ModA in humans, this protein could be a good target for antibacterial drug design. Backbone <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N chemical shifts of apo and molybdate-bound ModA from <i>E. coli</i> were assigned at pHs 6.0 and 4.5. In addition, side chain atoms were assigned for apo ModA at pH 6.0. When comparing apo and molybdate-bound ModA at pH 6.0, large chemical shift perturbations are observed, not only in areas near the bound metal, but also in regions that are distant from the metal-binding site. Given the significant conformational change between apo and holo ModA, we might expect the large chemical shift changes to be more widespread; however, since they are limited to specific regions, the residues with large perturbations may reveal allosteric sites that could ultimately be important for the design of antibiotics that target ModA.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"93 - 98"},"PeriodicalIF":0.8,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140624175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone chemical shift and secondary structure assignments for mouse siderocalin 小鼠苷酸骨干化学位移和二级结构分配。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-04-02 DOI: 10.1007/s12104-024-10171-9
Johanna Moeller, Nina G. Bozhanova, Markus Voehler, Jens Meiler, Clara T. Schoeder
{"title":"Backbone chemical shift and secondary structure assignments for mouse siderocalin","authors":"Johanna Moeller,&nbsp;Nina G. Bozhanova,&nbsp;Markus Voehler,&nbsp;Jens Meiler,&nbsp;Clara T. Schoeder","doi":"10.1007/s12104-024-10171-9","DOIUrl":"10.1007/s12104-024-10171-9","url":null,"abstract":"<div><p>\u0000 The lipocalin protein family is a structurally conserved group of proteins with a variety of biological functions defined by their ability to bind small molecule ligands and interact with partner proteins. One member of this family is siderocalin, a protein found in mammals. Its role is discussed in inflammatory processes, iron trafficking, protection against bacterial infections and oxidative stress, cell migration, induction of apoptosis, and cancer. Though it seems to be involved in numerous essential pathways, the exact mechanisms are often not fully understood. The NMR backbone assignments for the human siderocalin and its rat ortholog have been published before. In this work we describe the backbone NMR assignments of siderocalin for another important model organism, the mouse - data that might become important for structure-based drug discovery. Secondary structure elements were predicted based on the assigned backbone chemical shifts using TALOS-N and CSI 3.0, revealing a high content of beta strands and one prominent alpha helical region. Our findings correlate well with the known crystal structure and the overall conserved fold of the lipocalin family.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"79 - 84"},"PeriodicalIF":0.8,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081974/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140334185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 13C, and 15N resonance assignments and solution structure of the N-terminal divergent calponin homology (NN-CH) domain of human intraflagellar transport protein 54 人类鞘内转运蛋白 54 的 N 端分歧钙蛋白同源结构域(NN-CH)的 1H、13C 和 15N 共振赋值及溶液结构。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-03-29 DOI: 10.1007/s12104-024-10170-w
Kanako Kuwasako, Weirong Dang, Fahu He, Mari Takahashi, Kengo Tsuda, Takashi Nagata, Akiko Tanaka, Naohiro Kobayashi, Takanori Kigawa, Peter Güntert, Mikako Shirouzu, Shigeyuki Yokoyama, Yutaka Muto
{"title":"1H, 13C, and 15N resonance assignments and solution structure of the N-terminal divergent calponin homology (NN-CH) domain of human intraflagellar transport protein 54","authors":"Kanako Kuwasako,&nbsp;Weirong Dang,&nbsp;Fahu He,&nbsp;Mari Takahashi,&nbsp;Kengo Tsuda,&nbsp;Takashi Nagata,&nbsp;Akiko Tanaka,&nbsp;Naohiro Kobayashi,&nbsp;Takanori Kigawa,&nbsp;Peter Güntert,&nbsp;Mikako Shirouzu,&nbsp;Shigeyuki Yokoyama,&nbsp;Yutaka Muto","doi":"10.1007/s12104-024-10170-w","DOIUrl":"10.1007/s12104-024-10170-w","url":null,"abstract":"<div><p>The intraflagellar transport (IFT) machinery plays a crucial role in the bidirectional trafficking of components necessary for ciliary signaling, such as the Hedgehog, Wnt/PCR, and cAMP/PKA systems. Defects in some components of the IFT machinery cause dysfunction, leading to a wide range of human diseases and developmental disorders termed ciliopathies, such as nephronophthisis. The IFT machinery comprises three sub-complexes: BBsome, IFT-A, and IFT-B. The IFT protein 54 (IFT54) is an important component of the IFT-B sub-complex. In anterograde movement, IFT54 binds to active kinesin-II, walking along the cilia microtubule axoneme and carrying the dynein-2 complex in an inactive state, which works for retrograde movement. Several mutations in IFT54 are known to cause Senior-Loken syndrome, a ciliopathy. IFT54 possesses a divergent Calponin Homology (CH) domain termed as NN-CH domain at its N-terminus. However, several aspects of the function of the NN-CH domain of IFT54 are still obscure. Here, we report the <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C resonance assignments of the NN-CH domain of human IFT54 and its solution structure. The NN-CH domain of human IFT54 adopts essentially the α1–α2–α3–α4–α5 topology as that of mouse IFT54, whose structure was determined by X-ray crystallographic study. The structural information and assignments obtained in this study shed light on the molecular function of the NN-CH domain in IFT54.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"71 - 78"},"PeriodicalIF":0.8,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140326214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 13C and 15N backbone and side-chain resonance assignments of the human oncogenic protein NCYM 人类致癌蛋白 NCYM 的 1H、13C 和 15N 主干和侧链共振分配。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-03-25 DOI: 10.1007/s12104-024-10169-3
Assia Mouhand, Kazuma Nakatani, Fumiaki Kono, Yoshitaka Hippo, Tatsuhito Matsuo, Philippe Barthe, Judith Peters, Yusuke Suenaga, Taro Tamada, Christian Roumestand
{"title":"1H, 13C and 15N backbone and side-chain resonance assignments of the human oncogenic protein NCYM","authors":"Assia Mouhand,&nbsp;Kazuma Nakatani,&nbsp;Fumiaki Kono,&nbsp;Yoshitaka Hippo,&nbsp;Tatsuhito Matsuo,&nbsp;Philippe Barthe,&nbsp;Judith Peters,&nbsp;Yusuke Suenaga,&nbsp;Taro Tamada,&nbsp;Christian Roumestand","doi":"10.1007/s12104-024-10169-3","DOIUrl":"10.1007/s12104-024-10169-3","url":null,"abstract":"<div><p>NCYM is a cis-antisense gene of MYCN oncogene and encodes an oncogenic protein that stabilizes MYCN via inhibition of GSK3b. High NCYM expression levels are associated with poor clinical outcomes in human neuroblastomas, and NCYM overexpression promotes distant metastasis in animal models of neuroblastoma. Using vacuum-ultraviolet circular dichroism and small-angle X-ray scattering, we previously showed that NCYM has high flexibility with partially folded structures; however, further structural characterization is required for the design of anti-cancer agents targeting NCYM. Here we report the <sup>1</sup>H, <sup>15</sup>N and <sup>13</sup>C nuclear magnetic resonance assignments of NCYM. Secondary structure prediction using Secondary Chemical Shifts and TALOS-N analysis demonstrates that the structure of NCYM is essentially disordered, even though residues in the central region of the peptide clearly present a propensity to adopt a dynamic helical structure. This preliminary study provides foundations for further analysis of interaction between NCYM and potential partners.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"65 - 70"},"PeriodicalIF":0.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140287898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 15N and13C resonance assignments of S2A mutant of human carbonic anhydrase II 人碳酸酐酶 II S2A 突变体的 1H、15N 和 13C 共振分配。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-03-23 DOI: 10.1007/s12104-024-10166-6
Neelam, Himanshu Singh
{"title":"1H, 15N and13C resonance assignments of S2A mutant of human carbonic anhydrase II","authors":"Neelam,&nbsp;Himanshu Singh","doi":"10.1007/s12104-024-10166-6","DOIUrl":"10.1007/s12104-024-10166-6","url":null,"abstract":"<div><p>In preparation for a detailed exploration of the structural and functional aspects of the Ser2Ala mutant of human carbonic anhydrase II, we present here almost complete sequence-specific resonance assignments for <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C. The mutation of serine to alanine at position 2, located in the N-terminal region of the enzyme, significantly alters the hydrophilic nature of the site, rendering it hydrophobic. Consequently, there is an underlying assumption that this mutation would repel water from the site. However, intriguingly, comparative analysis of the mutant structure with the wild type reveals minimal discernible differences. These assignments serve as the basis for in-depth studies on histidine dynamics, protonation states, and its intricate role in protein-water interactions and catalysis.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"45 - 49"},"PeriodicalIF":0.8,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140193034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone 1H, 13C and 15N resonance assignment of the ubiquitin specific protease 7 catalytic domain (residues 208–554) in complex with a small molecule ligand 泛素特异性蛋白酶 7 催化结构域(残基 208-554)与小分子配体复合物的骨架 1H、13C 和 15N 共振赋值。
IF 0.8 4区 生物学
Biomolecular NMR Assignments Pub Date : 2024-03-12 DOI: 10.1007/s12104-024-10165-7
Maya J. Pandya, Wojciech Augustyniak, Matthew J. Cliff, Ilka Lindner, Anne Stinn, Jan Kahmann, Koen Temmerman, Hugh R. W. Dannatt, Jonathan P. Waltho, Martin J. Watson
{"title":"Backbone 1H, 13C and 15N resonance assignment of the ubiquitin specific protease 7 catalytic domain (residues 208–554) in complex with a small molecule ligand","authors":"Maya J. Pandya,&nbsp;Wojciech Augustyniak,&nbsp;Matthew J. Cliff,&nbsp;Ilka Lindner,&nbsp;Anne Stinn,&nbsp;Jan Kahmann,&nbsp;Koen Temmerman,&nbsp;Hugh R. W. Dannatt,&nbsp;Jonathan P. Waltho,&nbsp;Martin J. Watson","doi":"10.1007/s12104-024-10165-7","DOIUrl":"10.1007/s12104-024-10165-7","url":null,"abstract":"<div><p>The backbone <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N resonance assignment of Ubiquitin Specific Protease 7 catalytic domain (residues 208–554) was performed in its complex with a small molecule ligand and in its <i>apo</i> form as a reference. The amide <sup>1</sup>H-<sup>15</sup>N signal intensities were boosted by an amide hydrogen exchange protocol, where expressed <sup>2</sup>H, <sup>13</sup>C, <sup>15</sup>N-labeled protein was unfolded and re-folded to ensure exchange of amide deuterons to protons. The resonance assignments were used to determine chemical shift perturbations on ligand binding, which are consistent with the binding site observed by crystallography.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"33 - 44"},"PeriodicalIF":0.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140108653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信