1H, 13C, and 15N resonance assignments of the amyloidogenic peptide SEM2(49-107) by NMR spectroscopy.

IF 0.8 4区 生物学 Q4 BIOPHYSICS
Anastasia A Troshkina, Vladimir V Klochkov, Aydar G Bikmullin, Evelina A Klochkova, Dmitriy S Blokhin
{"title":"<sup>1</sup>H, <sup>13</sup>C, and <sup>15</sup>N resonance assignments of the amyloidogenic peptide SEM2(49-107) by NMR spectroscopy.","authors":"Anastasia A Troshkina, Vladimir V Klochkov, Aydar G Bikmullin, Evelina A Klochkova, Dmitriy S Blokhin","doi":"10.1007/s12104-024-10209-y","DOIUrl":null,"url":null,"abstract":"<p><p>It has been shown that human seminal fluid is a major factor in enhancing HIV activity. The SEM2(49-107) peptide is a product of cleavage after ejaculation by internal prostheses of the semenogelin 2 protein, expressed in seminal vesicles. It is established that the peptide SEM2(49-107) forms amyloid fibrils, which increase probability of contracting HIV infection. In this nuclear magnetic resonance (NMR) study, we present almost complete (86%) resonance assignments for the <sup>1</sup>H <sup>15</sup>N and <sup>13</sup>C atoms of the backbone and side-chain of the SEM2(49-107) peptide (BioMagResBank accession number 52356). The secondary structure of SEM2(49-107) peptide was estimated by using two approaches, secondary chemical shifts analysis (CSI) and TALOS-N prediction. Analysis of the secondary structure of the SEM2(49-107) peptide using both methods revealed that the peptide contains helical segments at the C-terminus. Also in this work, we used phase-sensitive 2D HSQC <sup>1</sup>H- <sup>15</sup>N experiments measuring longitudinal T<sub>1</sub> and transverse T<sub>2</sub> NMR relaxation times to report predicted secondary structure and backbone dynamics of the SEM2(49-107) peptide. This resonance assignment will form the basis of future NMR research, contributing to a better understanding of the peptide structure and internal dynamics of the molecule.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12104-024-10209-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

It has been shown that human seminal fluid is a major factor in enhancing HIV activity. The SEM2(49-107) peptide is a product of cleavage after ejaculation by internal prostheses of the semenogelin 2 protein, expressed in seminal vesicles. It is established that the peptide SEM2(49-107) forms amyloid fibrils, which increase probability of contracting HIV infection. In this nuclear magnetic resonance (NMR) study, we present almost complete (86%) resonance assignments for the 1H 15N and 13C atoms of the backbone and side-chain of the SEM2(49-107) peptide (BioMagResBank accession number 52356). The secondary structure of SEM2(49-107) peptide was estimated by using two approaches, secondary chemical shifts analysis (CSI) and TALOS-N prediction. Analysis of the secondary structure of the SEM2(49-107) peptide using both methods revealed that the peptide contains helical segments at the C-terminus. Also in this work, we used phase-sensitive 2D HSQC 1H- 15N experiments measuring longitudinal T1 and transverse T2 NMR relaxation times to report predicted secondary structure and backbone dynamics of the SEM2(49-107) peptide. This resonance assignment will form the basis of future NMR research, contributing to a better understanding of the peptide structure and internal dynamics of the molecule.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecular NMR Assignments
Biomolecular NMR Assignments 生物-光谱学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties. Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信