Journal of Applied Mathematics最新文献

筛选
英文 中文
The Sequential Conformable Langevin-Type Differential Equations and Their Applications to the RLC Electric Circuit Problems 顺序可简化朗格文微分方程及其在 RLC 电路问题中的应用
Journal of Applied Mathematics Pub Date : 2024-05-21 DOI: 10.1155/2024/3680383
M. Aydin, N. Mahmudov
{"title":"The Sequential Conformable Langevin-Type Differential Equations and Their Applications to the RLC Electric Circuit Problems","authors":"M. Aydin, N. Mahmudov","doi":"10.1155/2024/3680383","DOIUrl":"https://doi.org/10.1155/2024/3680383","url":null,"abstract":"In this paper, the sequential conformable Langevin-type differential equation is studied. A representation of a solution consisting of the newly defined conformable bivariate Mittag-Leffler function to its nonhomogeneous and linear version is obtained via the conformable Laplace transforms’ technique. Also, existence and uniqueness of a global solution to its nonlinear version are obtained. The existence and uniqueness of solutions are shown with respect to the weighted norm defined in compliance with (conformable) exponential function. The concept of the Ulam–Hyers stability of solutions is debated based on the fixed-point approach. The LRC electrical circuits are presented as an application to the described system. Simulated and numerical instances are offered to instantiate our abstract findings.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141115041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the Transmission Routes of Hepatitis E Virus as a Zoonotic Disease Using Fractional-Order Derivative 利用分数阶差法模拟戊型肝炎病毒作为人畜共患病的传播途径
Journal of Applied Mathematics Pub Date : 2024-05-21 DOI: 10.1155/2024/5168873
Shaibu Osman, Binandam Stephen Lassong, Munkaila Dasumani, Ernest Yeboah Boateng, Winnie Mokeira Onsongo, Boubacar Diallo, Oluwole Daniel Makinde
{"title":"Modeling the Transmission Routes of Hepatitis E Virus as a Zoonotic Disease Using Fractional-Order Derivative","authors":"Shaibu Osman, Binandam Stephen Lassong, Munkaila Dasumani, Ernest Yeboah Boateng, Winnie Mokeira Onsongo, Boubacar Diallo, Oluwole Daniel Makinde","doi":"10.1155/2024/5168873","DOIUrl":"https://doi.org/10.1155/2024/5168873","url":null,"abstract":"Hepatitis E virus (HEV) is one of the emerging zoonotic diseases in Sub-Saharan Africa. Domestic pigs are considered to be the main reservoir for this infectious disease. A third of the world’s population is thought to have been exposed to the virus. The zoonotic transmission of the HEV raises serious zoonotic and food safety concerns for the general public. This is a major public health issue in both developed and developing countries. The World Health Organization (WHO) estimated that 44,000 people died in 2015 as a result of HEV infection. East and South Asia have the highest prevalence of this disease overall. In this study, we proposed, developed, and analyzed the transmission routes of the infection using a fractional-order derivative approach. The existence, stability, and uniqueness of solutions were established using the approach and concept in Banach space. Local and global stability was determined using the Hyers–Ulam (HU) stability approach. Numerical simulation was conducted using existing parameter values, and it was established that, as the susceptible human population declines, the number of infected human populations rises with a change in fractional order θ^. When the susceptible pig population increases, the number of infected pig populations rises with a change in θ^. It was observed that a few variations in the fractional derivative order did not alter the function’s overall behavior with the results of numerical simulations. Moreover, as the number of recovered human populations increases, there is a corresponding increase in the population of recovered pigs with a change in θ^. The exponential increase in the infected pig population can be controlled by treatment of the infected pigs and prevention of the susceptible pigs. The authors recommend policymakers, and stakeholders prioritize the fight against the virus by enforcing the prevention of humans and treatment of infected pigs. The model can be extended to optimal control and cost-effectiveness analysis to determine the most effective control strategy that comes with less cost in the combat of the disease.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141114919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetric Encryption Algorithms in a Polynomial Residue Number System 多项式余数系统中的对称加密算法
Journal of Applied Mathematics Pub Date : 2024-05-20 DOI: 10.1155/2024/4894415
I. Yakymenko, M. Karpinski, R. Shevchuk, M. Kasianchuk
{"title":"Symmetric Encryption Algorithms in a Polynomial Residue Number System","authors":"I. Yakymenko, M. Karpinski, R. Shevchuk, M. Kasianchuk","doi":"10.1155/2024/4894415","DOIUrl":"https://doi.org/10.1155/2024/4894415","url":null,"abstract":"In this paper, we develop the theoretical provisions of symmetric cryptographic algorithms based on the polynomial residue number system for the first time. The main feature of the proposed approach is that when reconstructing the polynomial based on the method of undetermined coefficients, multiplication is performed not on the found base numbers but on arbitrarily selected polynomials. The latter, together with pairwise coprime residues of the residue class system, serve as the keys of the cryptographic algorithm. Schemes and examples of the implementation of the developed polynomial symmetric encryption algorithm are presented. The analytical expressions of the cryptographic strength estimation are constructed, and their graphical dependence on the number of modules and polynomial powers is presented. Our studies show that the cryptanalysis of the proposed algorithm requires combinatorial complexity, which leads to an NP-complete problem.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141119879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tensor Product Technique and Atomic Solution of Fractional Partial Differential Equations 张量积技术与微分偏微分方程的原子解法
Journal of Applied Mathematics Pub Date : 2024-05-20 DOI: 10.1155/2024/7607714
M. A. Hammad, W. Alshanti, Ahmad Alshanty, Roshdi Khalil
{"title":"Tensor Product Technique and Atomic Solution of Fractional Partial Differential Equations","authors":"M. A. Hammad, W. Alshanti, Ahmad Alshanty, Roshdi Khalil","doi":"10.1155/2024/7607714","DOIUrl":"https://doi.org/10.1155/2024/7607714","url":null,"abstract":"In this paper, we investigate the atomic solution of a special type of fractional partial differential equations. Tensor product in Banach spaces, some properties of atom operators, and some properties of conformable fractional derivatives are utilized in such process.JEL Classification: 34G10, 34A55","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical Modeling of the Transmission Dynamics of Gumboro Disease 甘博罗病传播动态的数学建模
Journal of Applied Mathematics Pub Date : 2024-05-13 DOI: 10.1155/2024/2514740
J. S. Musaili, I. Chepkwony, W. N. Mutuku
{"title":"Mathematical Modeling of the Transmission Dynamics of Gumboro Disease","authors":"J. S. Musaili, I. Chepkwony, W. N. Mutuku","doi":"10.1155/2024/2514740","DOIUrl":"https://doi.org/10.1155/2024/2514740","url":null,"abstract":"Gumboro disease is a viral poultry disease that causes immune suppression on the infected birds leading to poor production, mortality, and exposure to secondary infections, hence a major threat in the poultry industry worldwide. A mathematical model of the transmission dynamics of Gumboro disease is developed in this paper having four compartments of chicken population and one compartment of Gumboro pathogen population. The basic reproduction number Rog is derived, and the dynamical behaviors of both the disease-free equilibrium (DFE) and endemic equilibrium are analyzed using the ordinary differential equation theory. From the analysis, we found that the system exhibits an asymptotic stable DFE whenever Rog<1 and an asymptotic stable EE whenever Rog>1. The numerical simulation to verify the theoretical results was carried out using MATLAB ode45 solver, and the results were found to be consistent with the theoretical findings.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141128564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous Model Change Detection in Multivariate Linear Regression With Application to Indonesian Economic Growth Data 多变量线性回归中的同步模型变化检测在印尼经济增长数据中的应用
Journal of Applied Mathematics Pub Date : 2024-05-10 DOI: 10.1155/2024/4499481
W. Somayasa, Muhammad Kabil Djafar, Norma Muhtar, D. K. Sutiari
{"title":"Simultaneous Model Change Detection in Multivariate Linear Regression With Application to Indonesian Economic Growth Data","authors":"W. Somayasa, Muhammad Kabil Djafar, Norma Muhtar, D. K. Sutiari","doi":"10.1155/2024/4499481","DOIUrl":"https://doi.org/10.1155/2024/4499481","url":null,"abstract":"In this paper, we study asymptotic model change detection in multivariate linear regression by using the Kolmogorov–Smirnov function of the partial sum process of recursive residuals. We approximate the rejection region and also the power function of the test by establishing a functional central limit theorem for the sequence of the partial sum processes of the recursive residuals of the observations. When the assumed model is true, the limit process is given by the standard multivariate Brownian motion which does not depend on the regression functions. However, when the assumed model is not true (some models change), the limit process is represented by a vector of deterministic trend plus the standard multivariate Brownian motion. The finite sample size rejection region and the power of the test are investigated by means of Monte Carlo simulation. The simulation study shows evidence that the proposed test is consistent in the sense that it attains the power larger than the size of the test when the hypothesis is not true. We also demonstrate the application of the proposed test method to Indonesian economic growth data in which we test the adequacy of three-variate low-order polynomial model. The test result shows that the growth of the Indonesian economy is neither simultaneously constant nor linear. The test has successfully detect the appearance of a change in the model which is mainly caused by the COVID-19 pandemic in 2020.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140992761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Significance of Stochastic CTMC Over Deterministic Model in Understanding the Dynamics of Lymphatic Filariasis With Asymptomatic Carriers 随机 CTMC 模型比确定性模型对理解无症状携带者淋巴丝虫病动态的意义
Journal of Applied Mathematics Pub Date : 2024-05-04 DOI: 10.1155/2024/2130429
M. A. Stephano, J. I. Irunde, Maranya M. Mayengo, Dmitry Kuznetsov
{"title":"The Significance of Stochastic CTMC Over Deterministic Model in Understanding the Dynamics of Lymphatic Filariasis With Asymptomatic Carriers","authors":"M. A. Stephano, J. I. Irunde, Maranya M. Mayengo, Dmitry Kuznetsov","doi":"10.1155/2024/2130429","DOIUrl":"https://doi.org/10.1155/2024/2130429","url":null,"abstract":"Lymphatic filariasis is a leading cause of chronic and irreversible damage to human immunity. This paper presents deterministic and continuous-time Markov chain (CTMC) stochastic models regarding lymphatic filariasis dynamics. To account for randomness and uncertainties in dynamics, the CTMC model was formulated based on deterministic model possible events. A deterministic model’s outputs suggest that disease extinction is feasible when the secondary threshold infection number is below one, while persistence becomes likely when the opposite holds true. Furthermore, the significant contribution of asymptomatic carriers was identified. Results indicate that persistence is more likely to occur when the infection results from asymptomatic, acutely infected, or infectious mosquitoes. Consequently, the CTMC stochastic model is essential in capturing variabilities, randomness, associated probabilities, and validity across different scales, whereas oversimplification and unpredictability of inherent may not be featured in a deterministic model.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141013709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifurcation Analysis of the Dynamics in COVID-19 Transmission through Living and Nonliving Media COVID-19 在生物和非生物介质中传播的动力学分岔分析
Journal of Applied Mathematics Pub Date : 2024-03-22 DOI: 10.1155/2024/5669308
A. Wiraya, L. Fitriana, Triyanto, Yudi Ari Adi, Yuvita Andriani Kusumadewi, Sarah Khoirunnisa
{"title":"Bifurcation Analysis of the Dynamics in COVID-19 Transmission through Living and Nonliving Media","authors":"A. Wiraya, L. Fitriana, Triyanto, Yudi Ari Adi, Yuvita Andriani Kusumadewi, Sarah Khoirunnisa","doi":"10.1155/2024/5669308","DOIUrl":"https://doi.org/10.1155/2024/5669308","url":null,"abstract":"Transmission of COVID-19 occurs either through living media, such as interaction with a sufferer, or nonliving objects contaminated with the virus. Recovering sufferers and disinfectant spraying prevent interaction between people and virus become the treatment to overcome it. In this research, we formulate a new mathematical model as a three-dimensional ordinary differential equation system representing an interaction between viruses attached in nonliving media, susceptible, and infected subpopulations, including the treatment to investigate its effect. Disease-free, sterile-media endemic, and two nonsterile media endemic equilibriums exist in the model. The nonexistence of sterile-media equilibria interpreting the nonendemic condition is achieved by crossing the branch point bifurcation of the equilibria point as the infected subpopulation recovery rate increases. Continuation of the limit cycle generated at a Hopf bifurcation point as susceptible-coronavirus interaction prevention rate and period increase trigger two saddle-node bifurcations and a branch point bifurcation of cycle. Stable symmetric cycles with decreasing amplitude that make the dynamic of subpopulation easier to control start to be gained at the branch point bifurcation of cycle between the two saddle-node bifurcation points as the prevention rate increases. Some chaotic attractors which describe a complex and unpredictable pattern of the dynamic in the population are also found at inclination flip bifurcation by a continuation of a homoclinic orbit generated near the Bogdanov-Takens bifurcation point as the prevention rate increases while the recovery rate decreases. Increasing the recovery and prevention rate along with avoiding an increase of the prevention rate while the recovery rate decreases becomes the treatment to optimize the effort in overcoming COVID-19 transmission.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140216652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional-Order Model for Evolution of Bovine Tuberculosis with Vaccination and Contaminated Environment 牛结核病随疫苗接种和污染环境演变的分数阶模型
Journal of Applied Mathematics Pub Date : 2024-01-24 DOI: 10.1155/2024/6934895
Boubacar Diallo, J. Okelo, Shaibu Osman, Simon Karanja, N. S. Aguegboh
{"title":"Fractional-Order Model for Evolution of Bovine Tuberculosis with Vaccination and Contaminated Environment","authors":"Boubacar Diallo, J. Okelo, Shaibu Osman, Simon Karanja, N. S. Aguegboh","doi":"10.1155/2024/6934895","DOIUrl":"https://doi.org/10.1155/2024/6934895","url":null,"abstract":"Bovine tuberculosis (bTB) is a zoonotic disease that is commonly transmitted via inhaling aerosols, drinking unpasteurized milk, and eating raw meat. We use a fractional-order model with the Caputo sense to examine the evolution of bovine tuberculosis transmission in human and animal populations, including a vaccine compartment for humans. We derived and obtained the threshold quantity R0 to ascertain the illness state. We established conditions guaranteeing the asymptotic stability of the equilibria (locally and globally). Sensitivity analysis was conducted to identify the factors that govern the dynamics of tuberculosis. The study demonstrates that the rate of human-to-animal transmission of tuberculosis and environmental pollution and the rate of bTB transmission between animals all affect tuberculosis transmission. However, as vaccination rates increase and fewer individuals consume contaminated environment products (such as meat, milk, and other dairy products), the disease becomes less common in humans. To manage bovine TB, it is advised that information programmes be implemented, the environment be monitored, infected persons be treated, contaminated animals be vaccinated, and contaminated animals be quarantined. The usefulness of the discovered theoretical results is demonstrated through numerical experiments.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139600929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics Analysis of a Delayed Crimean-Congo Hemorrhagic Fever Virus Model in Humans 延迟克里米亚-刚果出血热病毒人体模型的动力学分析
Journal of Applied Mathematics Pub Date : 2024-01-23 DOI: 10.1155/2024/4818840
K. Q. Al-Jubouri, Raid Kamil Naji
{"title":"Dynamics Analysis of a Delayed Crimean-Congo Hemorrhagic Fever Virus Model in Humans","authors":"K. Q. Al-Jubouri, Raid Kamil Naji","doi":"10.1155/2024/4818840","DOIUrl":"https://doi.org/10.1155/2024/4818840","url":null,"abstract":"Given that the Crimean and Congo hemorrhagic fever is one of the deadly viral diseases that occur seasonally due to the activity of the carrier “tick,” studying and developing a mathematical model simulating this illness are crucial. Due to the delay in the disease’s incubation time in the sick individual, the paper involved the development of a mathematical model modeling the transmission of the disease from the carrier to humans and its spread among them. The major objective is to comprehend the dynamics of illness transmission so that it may be controlled, as well as how time delay affects this. The discussion of every one of the solution’s qualitative attributes is included. According to the established basic reproduction number, the stability analysis of the endemic equilibrium point and the disease-free equilibrium point is examined for the presence or absence of delay. Hopf bifurcation’s triggering circumstance is identified. Using the center manifold theorem and the normal form, the direction and stability of the bifurcating Hopf bifurcation are explored. The next step is sensitivity analysis, which explains the set of control settings that have an impact on how the system behaves. Finally, to further comprehend the model’s dynamical behavior and validate the discovered analytical conclusions, numerical simulation has been used.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139604197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信