{"title":"三阶差分方程的全局渐近稳定性和4周期振荡","authors":"M. E. Erdogan","doi":"10.1155/2023/5726617","DOIUrl":null,"url":null,"abstract":"The main objective of this paper is to study the global behavior and oscillation of the following third-order rational difference equation <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>α</mi> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> </mrow> </msub> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>2</mn> </mrow> </msub> <mo>/</mo> <mi>β</mi> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>γ</mi> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>2</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </math> , where the initial conditions <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </math> are nonzero real numbers and <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>γ</mi> </math> are positive constants such that <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"> <mi>α</mi> <mo>≤</mo> <mi>β</mi> <mo>+</mo> <mi>γ</mi> </math> . Visual examples supporting solutions are given at the end of the study. The figures are found with the help of MATLAB.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":"38 8","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Global Asymptotic Stability and 4-Period Oscillation of the Third-Order Difference Equation\",\"authors\":\"M. E. Erdogan\",\"doi\":\"10.1155/2023/5726617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this paper is to study the global behavior and oscillation of the following third-order rational difference equation <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>α</mi> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> </mrow> </msub> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>2</mn> </mrow> </msub> <mo>/</mo> <mi>β</mi> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>γ</mi> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>2</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </math> , where the initial conditions <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </math> are nonzero real numbers and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\"> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>γ</mi> </math> are positive constants such that <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\"> <mi>α</mi> <mo>≤</mo> <mi>β</mi> <mo>+</mo> <mi>γ</mi> </math> . Visual examples supporting solutions are given at the end of the study. The figures are found with the help of MATLAB.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":\"38 8\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5726617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5726617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文的主要目的是研究全球行为和振荡的三阶有理差分方程x n + 1 =αx n n−1 x n−2 /βx n−1 2 +γx n−2 2,初始条件x−2,x−1,x非零实数和α,β,γ是积极的常量,α≤β+γ。在研究的最后给出了支持解决方案的可视化示例。图形是借助MATLAB软件进行绘制的。
On the Global Asymptotic Stability and 4-Period Oscillation of the Third-Order Difference Equation
The main objective of this paper is to study the global behavior and oscillation of the following third-order rational difference equation , where the initial conditions are nonzero real numbers and are positive constants such that . Visual examples supporting solutions are given at the end of the study. The figures are found with the help of MATLAB.
期刊介绍:
Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.