三阶差分方程的全局渐近稳定性和4周期振荡

IF 1.2 Q2 MATHEMATICS, APPLIED
M. E. Erdogan
{"title":"三阶差分方程的全局渐近稳定性和4周期振荡","authors":"M. E. Erdogan","doi":"10.1155/2023/5726617","DOIUrl":null,"url":null,"abstract":"The main objective of this paper is to study the global behavior and oscillation of the following third-order rational difference equation <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>α</mi> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> </mrow> </msub> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>2</mn> </mrow> </msub> <mo>/</mo> <mi>β</mi> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>γ</mi> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>2</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </math> , where the initial conditions <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </math> are nonzero real numbers and <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>γ</mi> </math> are positive constants such that <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"> <mi>α</mi> <mo>≤</mo> <mi>β</mi> <mo>+</mo> <mi>γ</mi> </math> . Visual examples supporting solutions are given at the end of the study. The figures are found with the help of MATLAB.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Global Asymptotic Stability and 4-Period Oscillation of the Third-Order Difference Equation\",\"authors\":\"M. E. Erdogan\",\"doi\":\"10.1155/2023/5726617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this paper is to study the global behavior and oscillation of the following third-order rational difference equation <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>α</mi> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> </mrow> </msub> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>2</mn> </mrow> </msub> <mo>/</mo> <mi>β</mi> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>γ</mi> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>2</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </math> , where the initial conditions <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </math> are nonzero real numbers and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\"> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>γ</mi> </math> are positive constants such that <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\"> <mi>α</mi> <mo>≤</mo> <mi>β</mi> <mo>+</mo> <mi>γ</mi> </math> . Visual examples supporting solutions are given at the end of the study. The figures are found with the help of MATLAB.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5726617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5726617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是研究全球行为和振荡的三阶有理差分方程x n + 1 =αx n n−1 x n−2 /βx n−1 2 +γx n−2 2,初始条件x−2,x−1,x非零实数和α,β,γ是积极的常量,α≤β+γ。在研究的最后给出了支持解决方案的可视化示例。图形是借助MATLAB软件进行绘制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Global Asymptotic Stability and 4-Period Oscillation of the Third-Order Difference Equation
The main objective of this paper is to study the global behavior and oscillation of the following third-order rational difference equation x n + 1 = α x n x n 1 x n 2 / β x n 1 2 + γ x n 2 2 , where the initial conditions x 2 , x 1 , x 0 are nonzero real numbers and α , β , γ are positive constants such that α β + γ . Visual examples supporting solutions are given at the end of the study. The figures are found with the help of MATLAB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信