On the Global Asymptotic Stability and 4-Period Oscillation of the Third-Order Difference Equation

IF 1.2 Q2 MATHEMATICS, APPLIED
M. E. Erdogan
{"title":"On the Global Asymptotic Stability and 4-Period Oscillation of the Third-Order Difference Equation","authors":"M. E. Erdogan","doi":"10.1155/2023/5726617","DOIUrl":null,"url":null,"abstract":"The main objective of this paper is to study the global behavior and oscillation of the following third-order rational difference equation <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>α</mi> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> </mrow> </msub> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>2</mn> </mrow> </msub> <mo>/</mo> <mi>β</mi> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>γ</mi> <msubsup> <mrow> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>2</mn> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </math> , where the initial conditions <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </math> are nonzero real numbers and <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>γ</mi> </math> are positive constants such that <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"> <mi>α</mi> <mo>≤</mo> <mi>β</mi> <mo>+</mo> <mi>γ</mi> </math> . Visual examples supporting solutions are given at the end of the study. The figures are found with the help of MATLAB.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5726617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The main objective of this paper is to study the global behavior and oscillation of the following third-order rational difference equation x n + 1 = α x n x n 1 x n 2 / β x n 1 2 + γ x n 2 2 , where the initial conditions x 2 , x 1 , x 0 are nonzero real numbers and α , β , γ are positive constants such that α β + γ . Visual examples supporting solutions are given at the end of the study. The figures are found with the help of MATLAB.
三阶差分方程的全局渐近稳定性和4周期振荡
本文的主要目的是研究全球行为和振荡的三阶有理差分方程x n + 1 =αx n n−1 x n−2 /βx n−1 2 +γx n−2 2,初始条件x−2,x−1,x非零实数和α,β,γ是积极的常量,α≤β+γ。在研究的最后给出了支持解决方案的可视化示例。图形是借助MATLAB软件进行绘制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信