{"title":"Mapping Connectivity Patterns: Degree-Based Topological Indices of Corona Product Graphs","authors":"Nasir Ali, Zaeema Kousar, Maimoona Safdar, Fikadu Tesgera Tolasa, Enoch Suleiman","doi":"10.1155/2023/8975497","DOIUrl":null,"url":null,"abstract":"<jats:p>Graph theory (GT) is a mathematical field that involves the study of graphs or diagrams that contain points and lines to represent the representation of mathematical truth in a diagrammatic format. From simple graphs, complex network architectures can be built using graph operations. Topological indices (TI) are graph invariants that correlate the physicochemical and interesting properties of different graphs. TI deal with many properties of molecular structure as well. It is important to compute the TI of complex structures. The corona product (CP) of two graphs <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <mi>G</mi> <mtext> </mtext> </math> </jats:inline-formula> and <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <mi>H</mi> </math> </jats:inline-formula> gives us a new graph obtained by taking one copy of <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <mi>G</mi> </math> </jats:inline-formula> and <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"> <mfenced open=\"|\" close=\"|\"> <mrow> <mi>V</mi> <mfenced open=\"(\" close=\")\"> <mrow> <mi>G</mi> </mrow> </mfenced> </mrow> </mfenced> </math> </jats:inline-formula> copies of <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"> <mi>H</mi> </math> </jats:inline-formula> and joining the <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\"> <mi>i</mi> </math> </jats:inline-formula>th vertex of <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\"> <mi>G</mi> </math> </jats:inline-formula> to every vertex in the <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\"> <mi>i</mi> </math> </jats:inline-formula>th copy of <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\"> <mi>H</mi> </math> </jats:inline-formula>. In this paper, based on various CP graphs composed of paths, cycles, and complete graphs, the geometric index (GA) and atom bond connectivity (ABC) index are investigated. Particularly, we discussed the corona products <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\"> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>⨀</mo> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>t</mi> </mrow> </msub> </math> </jats:inline-formula>, <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\"> <msub> <mrow> <mi>C</mi> </mrow> <mrow> <mi>t</mi> </mrow> </msub> <mo>⨀</mo> <msub> <mrow> <mi>C</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> </math> </jats:inline-formula>, <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\"> <msub> <mrow> <mi>K</mi> </mrow> <mrow> <mi>t</mi> </mrow> </msub> <mo>⊙</mo> <msub> <mrow> <mi>K</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> </math> </jats:inline-formula>, <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\"> <msub> <mrow> <mi>K</mi> </mrow> <mrow> <mi>t</mi> </mrow> </msub> <mo>⊙</mo> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> </math> </jats:inline-formula>, and <jats:inline-formula> <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\"> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>⊙</mo> <msub> <mrow> <mi>K</mi> </mrow> <mrow> <mi>t</mi> </mrow> </msub> </math> </jats:inline-formula> and GA and ABC index. Moreover, a few molecular graphs and physicochemical features may be predicted by considering relevant mathematical findings supported by proofs.</jats:p>","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8975497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Graph theory (GT) is a mathematical field that involves the study of graphs or diagrams that contain points and lines to represent the representation of mathematical truth in a diagrammatic format. From simple graphs, complex network architectures can be built using graph operations. Topological indices (TI) are graph invariants that correlate the physicochemical and interesting properties of different graphs. TI deal with many properties of molecular structure as well. It is important to compute the TI of complex structures. The corona product (CP) of two graphs and gives us a new graph obtained by taking one copy of and copies of and joining the th vertex of to every vertex in the th copy of . In this paper, based on various CP graphs composed of paths, cycles, and complete graphs, the geometric index (GA) and atom bond connectivity (ABC) index are investigated. Particularly, we discussed the corona products , , , , and and GA and ABC index. Moreover, a few molecular graphs and physicochemical features may be predicted by considering relevant mathematical findings supported by proofs.
图论(GT)是一个数学领域,涉及对包含点和线的图或图的研究,以图解的形式表示数学真理。利用图运算,可以从简单的图建立复杂的网络架构。拓扑指数(TI)是与不同图形的物理化学和有趣特性相关联的图形不变式。拓扑指数也涉及分子结构的许多特性。计算复杂结构的 TI 非常重要。两个图 G 和 H 的日冕乘积(CP)给出了一个新图,该新图取 G 的一个副本和 H 的 V G 副本,并将 G 的第 i 个顶点与 H 的第 i 个副本中的每个顶点连接起来。本文基于由路径、循环和完整图组成的各种 CP 图,研究了几何指数(GA)和原子键连通性指数(ABC)。特别是讨论了电晕乘积 P s ⨀ P t、C t ⨀ C s、K t ⊙ K s、K t ⊙ P s 和 P s ⊙ K t 以及 GA 和 ABC 指数。此外,通过考虑相关的数学结论并辅以证明,还可以预测一些分子图谱和理化特征。
期刊介绍:
Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.