Human Cell最新文献

筛选
英文 中文
Bone marrow stromal cell antigen 2 is broadly expressed in the different pluripotent states of human pluripotent stem cells and regulates the expression of pluripotency genes and three germ layer markers. 骨髓基质细胞抗原2在人多能干细胞的不同多能状态下广泛表达,调控多能基因和三种胚层标记物的表达。
IF 3.4 3区 生物学
Human Cell Pub Date : 2024-12-24 DOI: 10.1007/s13577-024-01160-0
Hong Seo Choi, Ji Yoon Lee, Mun Ju Choi, Min Seong Kim, Chun Jeih Ryu
{"title":"Bone marrow stromal cell antigen 2 is broadly expressed in the different pluripotent states of human pluripotent stem cells and regulates the expression of pluripotency genes and three germ layer markers.","authors":"Hong Seo Choi, Ji Yoon Lee, Mun Ju Choi, Min Seong Kim, Chun Jeih Ryu","doi":"10.1007/s13577-024-01160-0","DOIUrl":"10.1007/s13577-024-01160-0","url":null,"abstract":"<p><p>Human pluripotent stem cells (hPSCs) have at least three distinct states: naïve pluripotency that represents the cellular states of the pre-implantation epiblast cells, primed pluripotency that represents the cellular states of the post-implantation epiblast cells, and formative pluripotency that represents a developmental continuum between naïve and primed pluripotency. Various cell surface markers have been used to define and analyze primed and naïve hPSCs within heterogeneous populations. However, not much is known about common cell surface markers for the different pluripotent states of hPSCs. To study surface molecules important for maintaining naive pluripotency, in this study, we generated murine monoclonal antibodies (MAbs) specific to naïve hPSCs. Subsequent studies showed that N15-F8, one of the MAbs, bound to both naïve and primed hPSCs. Cell surface biotin labeling and subsequent immunoprecipitation proved that N15-F8 recognized bone marrow stromal antigen 2 (BST2) in a conformation-dependent manner. Quantitative polymerase chain reaction (qPCR) revealed that BST2 expression was decreased during the early stages of differentiation via embryoid body (EB) formation in primed hPSCs. BST2 knockdown in primed hPSCs resulted in reduced expression of pluripotency genes. BST2 knockdown in naïve hPSCs also resulted in reduced expression of pluripotency genes and several naïve and primed pluripotent state-specific genes. BST2 knockdown induced the expression of ectoderm and endoderm markers in primed hPSCs, whereas it suppressed the expression of mesoderm markers. The results suggest that BST2 is broadly expressed in the different pluripotent states of hPSCs and regulates the expression of pluripotency genes and three germ layer markers.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 1","pages":"34"},"PeriodicalIF":3.4,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-Asarone regulates microglia polarization to alleviate TBI-induced nerve damage via Fas/FasL signaling axis. β-细丁酮通过Fas/FasL信号轴调控小胶质细胞极化,减轻脑外伤引起的神经损伤。
IF 3.4 3区 生物学
Human Cell Pub Date : 2024-12-24 DOI: 10.1007/s13577-024-01161-z
Mingyue Xia, Min Yi, Chunyuan Guo, Yeli Xie, Wenting Yu, Dongsheng Wang, Xingping Dai
{"title":"β-Asarone regulates microglia polarization to alleviate TBI-induced nerve damage via Fas/FasL signaling axis.","authors":"Mingyue Xia, Min Yi, Chunyuan Guo, Yeli Xie, Wenting Yu, Dongsheng Wang, Xingping Dai","doi":"10.1007/s13577-024-01161-z","DOIUrl":"10.1007/s13577-024-01161-z","url":null,"abstract":"<p><p>Acute injury and secondary injury caused by traumatic brain injury (TBI) seriously threaten the health of patients. The purpose of this study was to investigate the role of β-Asarone in TBI-induced neuroinflammation and injury. In this work, the effects of β-Asarone on nerve injury and neuronal apoptosis were investigated in mice with TBI by controlled cortical impingement. The results of this research implied that β-Asarone dose-dependently decreased the mNSS score, brain water content and neuronal apoptosis, but increased the levels of the axonal markers Nrp-1 and Tau in TBI mice. In addition, β-Asarone caused a decrease in the levels of Fas, FasL, and inflammatory factors in cerebrospinal fluid and serum of TBI mice. Therefore, β-Asarone inhibited neuroinflammation and promoted axon regeneration in TBI mice. Besides, β-Asarone treatment inhibited M1 phenotype polarization but promoted M2 phenotype polarization in microglia of TBI mice. Overexpression of Fas and FasL reversed the above effects of β-Asarone. Thus, β-Asarone regulated microglial M1/M2 polarization balance in TBI mice by suppressing Fas/FasL signaling axis. In conclusion, β-Asarone inhibited Fas/FasL signaling pathway to promote the M1/M2 polarization balance of microglia toward M2 polarization, thus alleviating TBI-induced nerve injury.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 1","pages":"33"},"PeriodicalIF":3.4,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MiR-34a regulates renal circadian rhythms during cisplatin-induced nephrotoxicity. MiR-34a在顺铂引起的肾毒性过程中调节肾脏昼夜节律。
IF 3.4 3区 生物学
Human Cell Pub Date : 2024-12-22 DOI: 10.1007/s13577-024-01163-x
Mohnad Abdalla, Amr Ahmed El-Arabey, Zhongtao Gai
{"title":"MiR-34a regulates renal circadian rhythms during cisplatin-induced nephrotoxicity.","authors":"Mohnad Abdalla, Amr Ahmed El-Arabey, Zhongtao Gai","doi":"10.1007/s13577-024-01163-x","DOIUrl":"10.1007/s13577-024-01163-x","url":null,"abstract":"","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 1","pages":"32"},"PeriodicalIF":3.4,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142873115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomal miR-146a-5p derived from bone marrow mesenchymal stromal cells regulate Th1/Th2 balance and alleviates immune thrombocytopenia in pregnancy. 来自骨髓间充质基质细胞的外泌体miR-146a-5p调节Th1/Th2平衡,缓解妊娠期免疫性血小板减少症。
IF 3.4 3区 生物学
Human Cell Pub Date : 2024-12-19 DOI: 10.1007/s13577-024-01162-y
Yanyan Rong, Wei Lu, Xianbao Huang, Dexiang Ji, Dehong Tang, Ruibin Huang, Wenhua Zhou, Guoan Chen, Yue He
{"title":"Exosomal miR-146a-5p derived from bone marrow mesenchymal stromal cells regulate Th1/Th2 balance and alleviates immune thrombocytopenia in pregnancy.","authors":"Yanyan Rong, Wei Lu, Xianbao Huang, Dexiang Ji, Dehong Tang, Ruibin Huang, Wenhua Zhou, Guoan Chen, Yue He","doi":"10.1007/s13577-024-01162-y","DOIUrl":"10.1007/s13577-024-01162-y","url":null,"abstract":"<p><p>Immune thrombocytopenia (ITP) is a common hematological disorder. Our previous study has found that exosomal miR-146a-5p derived from bone marrow mesenchymal stromal cells (BMSCs) regulate Th17/Treg balance to alleviate ITP. This work further investigated the role of miR-146a-5p in ITP with pregnancy. Compared with healthy pregnant volunteers, the levels of Th1 cells and IFN-γ were increased, the levels of Th2 cells and IL-4 were decreased in peripheral blood of ITP patients with pregnancy. Then, human BMSCs-exosomes repressed the ratio of Th1/Th2 cells in CD4<sup>+</sup> T cells, while BMSCs-exosomes with miR-146a-5p inhibitor increased Th1/Th2 cell ratio. Moreover, an ITP mouse model with pregnancy was constructed by administering anti-CD41 antibody in pregnant mice to verify the role of BMSCs-Exo in vivo. BMSCs-Exo elevated the number of platelet and megakaryocyte, improved the function of gastric, spleen and thymus tissues in ITP mice with pregnancy, which attributed to delivery miR-146a-5p. Furthermore, miR-146a-5p interacted with CARD10, and then repressed CARD10/NF-κB signaling pathway. BMSCs-exosomes promoted proliferation and inhibited apoptosis of Dami cells. In conclusion, BMSCs-exosomal miR-146a-5p reduced Th1/Th2 cell ratio to elevate proliferation and inhibit apoptosis of Dami cells, thereby alleviating ITP with pregnancy development. Therefore, miR-146a-5p may be a target for ITP with pregnancy treatment.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 1","pages":"31"},"PeriodicalIF":3.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142856035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N6-methyladenosine-modified SRD5A3, identified by IGF2BP3, sustains cisplatin resistance in bladder cancer. 经 IGF2BP3 鉴定的 N6-甲基腺苷修饰 SRD5A3 可维持膀胱癌的顺铂耐药性。
IF 3.4 3区 生物学
Human Cell Pub Date : 2024-12-16 DOI: 10.1007/s13577-024-01136-0
Kai Liao, Jing Li, Caixian He, Jiyong Peng
{"title":"N6-methyladenosine-modified SRD5A3, identified by IGF2BP3, sustains cisplatin resistance in bladder cancer.","authors":"Kai Liao, Jing Li, Caixian He, Jiyong Peng","doi":"10.1007/s13577-024-01136-0","DOIUrl":"10.1007/s13577-024-01136-0","url":null,"abstract":"<p><p>Resistance to cisplatin-based chemotherapy limits the clinical benefit to some bladder cancer patients, and understanding the epigenetic regulation mechanism of cisplatin (CDDP) resistance in bladder cancer from the perspective of N6-methyladenosine (m6A) modification may optimize CDDP-based treatments. The study identified SRD5A3 as an oncogene for bladder cancer and stabilized by a m6A reader, IGF2BP3, to sustain CDDP resistance. Our results revealed that the expression of SRD5A3 was elevated in human bladder cancer tissues and cell lines, and this elevation was more evident in CDDP-resistant T24 and 5637 cells. Results of CCK-8 assay, colony formation assay, EdU staining, and flow cytometric analysis revealed that SRD5A3 knockdown and IGF2BP3 knockdown reduced cell proliferation and prevented chemoresistance in CDDP-resistant T24 and 5637 cells. Results of methylated RNA immunoprecipitation-PCR, RNA immunoprecipitation assay, and luciferase reporter assay showed IGF2BP3 recognized the SRD5A3 m6A modification and stabilized its mRNA. Nude mice implanted subcutaneously with CDDP-resistant T24 cells were injected intraperitoneally with CDDP (2 mg/kg) every 3 days for 35 days and the results demonstrated that SRD5A3 knockdown and IGF2BP3 knockdown effectively inhibited the tumor growth in subcutaneous implantation model. Collectively, the study unveils that IGF2BP3-mediated SRD5A3 m6A modification facilitates bladder cancer progression and induces CDDP resistance, providing rational therapeutic targets for bladder cancer patients.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 1","pages":"30"},"PeriodicalIF":3.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142830445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment and characterization of NCC-GCTB10-C1: a novel cell line derived from a patient with recurrent giant cell tumor of bone. NCC-GCTB10-C1的建立和表征:一种来自复发性骨巨细胞瘤患者的新细胞系。
IF 3.4 3区 生物学
Human Cell Pub Date : 2024-12-09 DOI: 10.1007/s13577-024-01153-z
Yuki Adachi, Rei Noguchi, Julia Osaki, Takuya Ono, Taro Akiyama, Hiroya Kondo, Eisuke Kobayashi, Naoki Kojima, Akihiko Yoshida, Hideki Yokoo, Akira Kawai, Tadashi Kondo
{"title":"Establishment and characterization of NCC-GCTB10-C1: a novel cell line derived from a patient with recurrent giant cell tumor of bone.","authors":"Yuki Adachi, Rei Noguchi, Julia Osaki, Takuya Ono, Taro Akiyama, Hiroya Kondo, Eisuke Kobayashi, Naoki Kojima, Akihiko Yoshida, Hideki Yokoo, Akira Kawai, Tadashi Kondo","doi":"10.1007/s13577-024-01153-z","DOIUrl":"10.1007/s13577-024-01153-z","url":null,"abstract":"<p><p>Giant cell tumor of bone (GCTB) is a rare osteolytic tumor composed of mononuclear stromal cells, macrophages, and osteoclast-like giant cells. While generally benign, GCTB has a high risk of local recurrence and can occasionally undergo malignant transformation or metastasis, posing significant clinical challenges. The primary treatment is complete surgical resection; however, effective management strategies for recurrent or advanced GCTB remain elusive, underscoring the need for further preclinical research. This study reports the establishment of a novel cell line, NCC-GCTB10-C1, derived from a recurrent GCTB lesion. NCC-GCTB10-C1 retains the characteristic H3-3A G34W mutation, which is central to the tumor's pathogenesis, and demonstrates significant growth potential, spheroid formation capability, and invasive properties. Extensive drug screening of NCC-GCTB10-C1, along with nine previously established GCTB cell lines, revealed a distinct drug response profile, with the cell line showing resistance to many previously effective agents. However, doxorubicin, foretinib, and ceritinib were identified as promising therapeutic candidates due to their low IC<sub>50</sub> values in NCC-GCTB10-C1. The establishment of NCC-GCTB10-C1 offers a critical resource for further research into GCTB, especially in the context of recurrent disease, and holds potential for the development of more effective treatment strategies.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 1","pages":"29"},"PeriodicalIF":3.4,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142803042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment and characterization of a novel patient-derived cell line from conventional central grade 3 chondrosarcoma, NCC-CS1-C1. 一种来自常规3级中枢软骨肉瘤NCC-CS1-C1的新型患者来源细胞系的建立和表征
IF 3.4 3区 生物学
Human Cell Pub Date : 2024-12-08 DOI: 10.1007/s13577-024-01152-0
Rei Noguchi, Takuya Ono, Julia Osaki, Yuki Adachi, Shuhei Iwata, Yomogi Shiota, Kazuyoshi Yanagihara, Shogo Nishino, Takaya Funada, Koichi Ogura, Akihiko Yoshida, Akira Kawai, Tadashi Kondo
{"title":"Establishment and characterization of a novel patient-derived cell line from conventional central grade 3 chondrosarcoma, NCC-CS1-C1.","authors":"Rei Noguchi, Takuya Ono, Julia Osaki, Yuki Adachi, Shuhei Iwata, Yomogi Shiota, Kazuyoshi Yanagihara, Shogo Nishino, Takaya Funada, Koichi Ogura, Akihiko Yoshida, Akira Kawai, Tadashi Kondo","doi":"10.1007/s13577-024-01152-0","DOIUrl":"10.1007/s13577-024-01152-0","url":null,"abstract":"<p><p>Chondrosarcoma (CS) is a malignant tumor that produces cartilaginous matrix and is the second most common primary bone sarcoma. CS encompasses a range of histological subtypes, with high-grade conventional central CS being particularly rare, occurring at a rate of 1.81 cases per 1 million person-years. Complete surgical resection is the standard curative treatment for this subtype, as radiation therapy and chemotherapy have proven ineffective. High-grade conventional central CS is highly metastatic and prone to recurrence, resulting in a poor prognosis. Therefore, effective multidisciplinary treatment strategies are urgently needed. Patient-derived cell lines offer promising tools for exploring new therapeutic approaches. However, only two cell lines of high-grade CSs are currently available in public cell banks. In this study, we aimed to establish a novel cell line for high-grade conventional central CS. We successfully developed the NCC-CS1-C1 cell line using surgically resected tumor tissues from a patient with conventional central grade 3 CS. This cell line harbored an IDH1 mutation (p.R132S), commonly found in 50% of CS cases, and exhibited complex copy number variants. A high-throughput screening of 221 anti-cancer drugs identified five candidates-bortezomib, carfilzomib, doxorubicin, panobinostat, and romidepsin-that demonstrated low IC50 values, indicating potential efficacy in treating CS. These findings suggest that NCC-CS1-C1 is a valuable tool for both preclinical and basic research on high-grade conventional central CS.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 1","pages":"28"},"PeriodicalIF":3.4,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment of two novel organoid lines from patients with combined hepatocellular cholangiocarcinoma. 从合并肝细胞胆管癌患者身上建立两种新的类器官系。
IF 3.4 3区 生物学
Human Cell Pub Date : 2024-12-06 DOI: 10.1007/s13577-024-01148-w
Yun Gao, Xiaoyun Chen, Yuerong Zhu, Suiqing Zhou, Long Zhang, Qiuyue Wu, Hui Zhang, Ziyi Wang, Xuejiao Chen, Xinyi Xia, Liyong Pu, Xuehao Wang
{"title":"Establishment of two novel organoid lines from patients with combined hepatocellular cholangiocarcinoma.","authors":"Yun Gao, Xiaoyun Chen, Yuerong Zhu, Suiqing Zhou, Long Zhang, Qiuyue Wu, Hui Zhang, Ziyi Wang, Xuejiao Chen, Xinyi Xia, Liyong Pu, Xuehao Wang","doi":"10.1007/s13577-024-01148-w","DOIUrl":"10.1007/s13577-024-01148-w","url":null,"abstract":"<p><p>Combined hepatocellular cholangiocarcinoma (cHCC-CCA) is a unique subtype of primary liver cancer displaying both hepatocytic and cholangiocytic differentiation. The development of effective treatments for cHCC-CCA remains challenging because of its high heterogeneity and lack of a suitable model system. Using a three-dimensional culture system, we successfully established two novel cHCC-CCA organoid lines from patients undergoing surgical resection for primary liver cancer. cHCC-CCA organoid lines were authenticated by fingerprint analysis, and their morphology, growth kinetics, and anchorage-independent growth were also characterized. Hematoxylin and eosin staining and immunohistochemical analysis showed that the cHCC-CCA organoids preserved the growth pattern, differentiation grade, and phenotypic characteristics of their parental tumors. Whole-exome sequencing demonstrated that patient-derived cHCC-CCA organoid lines retained the genetic alterations identified in their original tumors. Subcutaneous tumors developed in immunodeficient mice after injection of cHCC-CCA organoids. Histologically, the xenografts recapitulated the features of the original cHCC-CCA tumors, harboring both HCC and intrahepatic cholangiocarcinoma components within the same tumor. The establishment of patient-derived cHCC-CCA organoid lines with high tumorigenicity provides a valuable resource for the mechanistic investigation and drug development of this disease.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 1","pages":"27"},"PeriodicalIF":3.4,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging role of exosomes during the pathogenesis of viral hepatitis, non-alcoholic steatohepatitis and alcoholic hepatitis. 外泌体在病毒性肝炎、非酒精性脂肪性肝炎和酒精性肝炎发病过程中的新作用。
IF 3.4 3区 生物学
Human Cell Pub Date : 2024-12-04 DOI: 10.1007/s13577-024-01158-8
Congjian Shi, Shuang Hu, Shen Liu, Xiaodi Jia, Yubin Feng
{"title":"Emerging role of exosomes during the pathogenesis of viral hepatitis, non-alcoholic steatohepatitis and alcoholic hepatitis.","authors":"Congjian Shi, Shuang Hu, Shen Liu, Xiaodi Jia, Yubin Feng","doi":"10.1007/s13577-024-01158-8","DOIUrl":"10.1007/s13577-024-01158-8","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) refer to a diverse range of membranous vesicles that are secreted by various cell types, they can be categorized into two primary subgroups: exosomes and microvesicles. Specifically, exosomes constitute a nanosized subset of EVs characterized by their intact lipid bilayer and diameters ranging from 30 to 150 nm. These vesicles play a crucial role in intercellular communication by transporting a diverse array of biomolecules, which act as cargoes for this communication process. Exosomes have demonstrated significant implications in a wide range of biologic processes and pathologic conditions, including immunity, development, cancer, neurodegenerative diseases, and liver diseases. Liver diseases significantly contribute to the global burden of morbidity and mortality, yet their pathogenesis remains complex and effective therapies are relatively scarce. Emerging evidence suggests that exosomes play a modulatory role in the pathogenesis of liver diseases, including viral hepatitis, non-alcoholic steatohepatitis (NASH), and alcoholic hepatitis (AH). These findings bolster our confidence in the potential of exosomes as biomarkers and therapeutic tools for the diagnosis and treatment of liver diseases. In this comprehensive review, we offer a straightforward overview of exosomes and summarize the current understanding of their role in the pathogenesis of liver diseases. This provides a foundation for novel diagnostic and therapeutic approaches in the treatment of liver diseases.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 1","pages":"26"},"PeriodicalIF":3.4,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142774000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment and characterization of the novel myxofibrosarcoma cell line, SMU-MFS. 新型黏液纤维肉瘤细胞系SMU-MFS的建立与鉴定。
IF 3.4 3区 生物学
Human Cell Pub Date : 2024-12-03 DOI: 10.1007/s13577-024-01157-9
Naoya Nakahashi, Makoto Emori, Kohichi Takada, Yasutaka Murahashi, Junya Shimizu, Kazuyuki Murase, Tomohide Tsukahara, Shintaro Sugita, Akira Takasawa, Kousuke Iba, Atsushi Teramoto, Makoto Osanai
{"title":"Establishment and characterization of the novel myxofibrosarcoma cell line, SMU-MFS.","authors":"Naoya Nakahashi, Makoto Emori, Kohichi Takada, Yasutaka Murahashi, Junya Shimizu, Kazuyuki Murase, Tomohide Tsukahara, Shintaro Sugita, Akira Takasawa, Kousuke Iba, Atsushi Teramoto, Makoto Osanai","doi":"10.1007/s13577-024-01157-9","DOIUrl":"10.1007/s13577-024-01157-9","url":null,"abstract":"<p><p>Myxofibrosarcoma (MFS) is one of the most common soft-tissue sarcomas in elderly patients. Owing to the limited efficacy of chemotherapy and radiotherapy, complete resection is the only available curative treatment. Therefore, developing novel therapies for MFS is important to improve clinical outcomes. Herein, a novel MFS cell line, namely SMU-MFS, was established to better understand the biologic characteristics of MFS and develop new therapies. A tissue sample from the surgically resected tumor tissue of a 56-year-old patient with a tumor was subjected to primary culture. The cell line was established and authenticated by assessing the short tandem repeats of DNA microsatellites. The monolayer cultures of SMU-MFS cells exhibited constant growth, spheroid formation, and invasive capacity. Furthermore, the cells exhibited low chemosensitivity to doxorubicin, eribulin, and pazopanib, which are used to inhibit metastatic progression. In addition, of the four mice inoculated with SMU-MFS cells, tumors developed in two mice after 8 weeks. Altogether, the findings of this study suggest that the SMU-MFS cell line can be a useful tool for investigating MFS development and evaluating novel therapeutic agents.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 1","pages":"25"},"PeriodicalIF":3.4,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142774002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信