{"title":"从携带NFIA基因基因内缺失的患者身上衍生的人类诱导多能干细胞系。","authors":"Ning Zhou, Shengnan Zhang, Chunli Wang, Bixia Zheng, Aihua Zhang, Wei Zhou","doi":"10.1007/s13577-025-01222-x","DOIUrl":null,"url":null,"abstract":"<p><p>Brain malformations with or without urinary tract defects (BRMUTD) are caused by heterozygous variants in the NFIA gene. BRMUTD is a neurodevelopmental disorder characterized by hypoplasia or absence of the corpus callosum, hydrocephalus or ventriculomegaly, and developmental delay, which may or may not be accompanied by urinary tract defects. Here, we report the successful generation of induced pluripotent stem cells (hiPSCs) from a 3-year-old male BRMUTD patient using Sendai virus-based non-integrating reprogramming technology. This patient-derived cell line harbors an intragenic deletion within the NFIA gene (NC_000001.10: g.61650967_61842967del [GRCh37]), which is associated with a significant reduction in NFIA expression. This cell line maintains a normal karyotype, expresses pluripotency markers, and can differentiate into three germ layers. The established hiPSCs line will provide an in vitro model for studying pathological mechanisms and potential therapies of NFIA-related neurodevelopmental disorder.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 3","pages":"95"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of human induced pluripotent stem cell lines derived from a patient carrying an intragenic deletion in the NFIA gene.\",\"authors\":\"Ning Zhou, Shengnan Zhang, Chunli Wang, Bixia Zheng, Aihua Zhang, Wei Zhou\",\"doi\":\"10.1007/s13577-025-01222-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain malformations with or without urinary tract defects (BRMUTD) are caused by heterozygous variants in the NFIA gene. BRMUTD is a neurodevelopmental disorder characterized by hypoplasia or absence of the corpus callosum, hydrocephalus or ventriculomegaly, and developmental delay, which may or may not be accompanied by urinary tract defects. Here, we report the successful generation of induced pluripotent stem cells (hiPSCs) from a 3-year-old male BRMUTD patient using Sendai virus-based non-integrating reprogramming technology. This patient-derived cell line harbors an intragenic deletion within the NFIA gene (NC_000001.10: g.61650967_61842967del [GRCh37]), which is associated with a significant reduction in NFIA expression. This cell line maintains a normal karyotype, expresses pluripotency markers, and can differentiate into three germ layers. The established hiPSCs line will provide an in vitro model for studying pathological mechanisms and potential therapies of NFIA-related neurodevelopmental disorder.</p>\",\"PeriodicalId\":49194,\"journal\":{\"name\":\"Human Cell\",\"volume\":\"38 3\",\"pages\":\"95\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13577-025-01222-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-025-01222-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Generation of human induced pluripotent stem cell lines derived from a patient carrying an intragenic deletion in the NFIA gene.
Brain malformations with or without urinary tract defects (BRMUTD) are caused by heterozygous variants in the NFIA gene. BRMUTD is a neurodevelopmental disorder characterized by hypoplasia or absence of the corpus callosum, hydrocephalus or ventriculomegaly, and developmental delay, which may or may not be accompanied by urinary tract defects. Here, we report the successful generation of induced pluripotent stem cells (hiPSCs) from a 3-year-old male BRMUTD patient using Sendai virus-based non-integrating reprogramming technology. This patient-derived cell line harbors an intragenic deletion within the NFIA gene (NC_000001.10: g.61650967_61842967del [GRCh37]), which is associated with a significant reduction in NFIA expression. This cell line maintains a normal karyotype, expresses pluripotency markers, and can differentiate into three germ layers. The established hiPSCs line will provide an in vitro model for studying pathological mechanisms and potential therapies of NFIA-related neurodevelopmental disorder.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.