{"title":"A crossed homomorphism for groups acting on the circle","authors":"Shuhei Maruyama","doi":"10.1142/s1793525324500092","DOIUrl":"https://doi.org/10.1142/s1793525324500092","url":null,"abstract":"<p>In this paper, we construct a crossed homomorphism by using a group action on the circle and the Poincaré translation number. We relate it to the Euler class of the action in terms of the Hochschild–Serre spectral sequence. As an application, we answer a question of Calegari and Chen, which is on an explicit form of a certain crossed homomorphism on the mapping class group of the sphere minus a Cantor set.</p>","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"152 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140166952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytic automorphism group and similar representation of analytic functions","authors":"Bingzhe Hou, Chunlan Jiang","doi":"10.1142/s1793525324500043","DOIUrl":"https://doi.org/10.1142/s1793525324500043","url":null,"abstract":"","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"87 8","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139450119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Morse homology for perturbed Dirac-harmonic maps into flat tori","authors":"Takeshi Isobe","doi":"10.1142/s1793525324500031","DOIUrl":"https://doi.org/10.1142/s1793525324500031","url":null,"abstract":"","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"74 6","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139450440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bounding the Lagrangian Hofer metric via barcodes","authors":"Patricia Dietzsch","doi":"10.1142/s1793525324500067","DOIUrl":"https://doi.org/10.1142/s1793525324500067","url":null,"abstract":"","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"20 6","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139450049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Canonical nilpotent structure under bounded Ricci curvature and Reifenberg local covering geometry over regular limits","authors":"Zuohai Jiang, Lingling Kong, Shicheng Xu","doi":"10.1142/s1793525323500607","DOIUrl":"https://doi.org/10.1142/s1793525323500607","url":null,"abstract":"<p>It is known that a closed collapsed Riemannian <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span>-manifold <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of bounded Ricci curvature and Reifenberg local covering geometry admits a nilpotent structure in the sense of Cheeger–Fukaya–Gromov with respect to a smoothed metric <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. We study the nilpotent structures over a regular limit space with optimal regularities that describe the collapsing of original metric <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi></math></span><span></span>, and prove that they are uniquely determined up to a conjugation by diffeomorphisms with bi-Lipschitz constant almost <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn></math></span><span></span>, and are equivalent to nilpotent structures arising from other nearby metrics <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>g</mi></mrow><mrow><mi>𝜖</mi></mrow></msub></math></span><span></span> with respect to <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>g</mi></mrow><mrow><mi>𝜖</mi></mrow></msub></math></span><span></span>’s sectional curvature bound.</p>","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"9 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140173042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Equivariant formality of the isotropy action on (ℤ2 ⊕ ℤ2)-symmetric spaces","authors":"Manuel Amann, Andreas Kollross","doi":"10.1142/s1793525323500504","DOIUrl":"https://doi.org/10.1142/s1793525323500504","url":null,"abstract":"<p>Compact symmetric spaces are probably one of the most prominent class of <i>formal</i> spaces, i.e. of spaces where the rational homotopy type is a formal consequence of the rational cohomology algebra. As a generalization, it is even known that their isotropy action is equivariantly formal. In this paper, we show that <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">⊕</mo><msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>-symmetric spaces are equivariantly formal and formal in the sense of Sullivan, in particular. Moreover, we give a short alternative proof of equivariant formality in the case of symmetric spaces with our new approach.</p>","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140168961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy estimates of Yang—Mills functional","authors":"Teng Huang","doi":"10.1142/s1793525323500619","DOIUrl":"https://doi.org/10.1142/s1793525323500619","url":null,"abstract":"","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"7 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139244743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unitary connections on bratteli diagrams","authors":"Paramita Das, Mainak Ghosh, S. Ghosh, Corey Jones","doi":"10.1142/s1793525323500589","DOIUrl":"https://doi.org/10.1142/s1793525323500589","url":null,"abstract":"","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"71 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139265418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resolution of singular fibers of an S1-manifold","authors":"Yi-Sheng Wang","doi":"10.1142/s1793525323500565","DOIUrl":"https://doi.org/10.1142/s1793525323500565","url":null,"abstract":"","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"24 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139274090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Growth rate of dehn twist lattice points in teichmuller space","authors":"Jiawei Han","doi":"10.1142/s179352532350053x","DOIUrl":"https://doi.org/10.1142/s179352532350053x","url":null,"abstract":"Athreya, Bufetov, Eskin and Mirzakhani have shown the number of mapping class group lattice points intersecting a closed ball of radius $R$ in Teichm\"{u}ller space is asymptotic to $e^{hR}$, where $h$ is the dimension of the Teichm\"{u}ller space. In contrast we show the number of Dehn twist lattice points intersecting a closed ball of radius $R$ is coarsely asymptotic to $e^{frac{h}{2}R}$. Moreover, we show the number multi-twist lattice points intersecting a closed ball of radius $R$ grows coarsely at least at the rate of $R cdot e^{frac{h}{2}R}$.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"10 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136227553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}