(ℤ2 ⊕ ℤ2)对称空间上各向同性作用的等变形式性

IF 0.5 3区 数学 Q3 MATHEMATICS
Manuel Amann, Andreas Kollross
{"title":"(ℤ2 ⊕ ℤ2)对称空间上各向同性作用的等变形式性","authors":"Manuel Amann, Andreas Kollross","doi":"10.1142/s1793525323500504","DOIUrl":null,"url":null,"abstract":"<p>Compact symmetric spaces are probably one of the most prominent class of <i>formal</i> spaces, i.e. of spaces where the rational homotopy type is a formal consequence of the rational cohomology algebra. As a generalization, it is even known that their isotropy action is equivariantly formal. In this paper, we show that <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">⊕</mo><msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>-symmetric spaces are equivariantly formal and formal in the sense of Sullivan, in particular. Moreover, we give a short alternative proof of equivariant formality in the case of symmetric spaces with our new approach.</p>","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant formality of the isotropy action on (ℤ2 ⊕ ℤ2)-symmetric spaces\",\"authors\":\"Manuel Amann, Andreas Kollross\",\"doi\":\"10.1142/s1793525323500504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Compact symmetric spaces are probably one of the most prominent class of <i>formal</i> spaces, i.e. of spaces where the rational homotopy type is a formal consequence of the rational cohomology algebra. As a generalization, it is even known that their isotropy action is equivariantly formal. In this paper, we show that <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">⊕</mo><msub><mrow><mi>ℤ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-symmetric spaces are equivariantly formal and formal in the sense of Sullivan, in particular. Moreover, we give a short alternative proof of equivariant formality in the case of symmetric spaces with our new approach.</p>\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525323500504\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525323500504","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

紧凑对称空间可能是最突出的一类形式空间,即有理同调类型是有理同调代数的形式结果的空间。作为一般化,我们甚至知道它们的等向作用是等变形式的。在本文中,我们证明了(ℤ2⊕ℤ2)对称空间是等变形式的,尤其是在沙利文的意义上是形式的。此外,我们用新方法给出了对称空间等变形式性的简短替代证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivariant formality of the isotropy action on (ℤ2 ⊕ ℤ2)-symmetric spaces

Compact symmetric spaces are probably one of the most prominent class of formal spaces, i.e. of spaces where the rational homotopy type is a formal consequence of the rational cohomology algebra. As a generalization, it is even known that their isotropy action is equivariantly formal. In this paper, we show that (22)-symmetric spaces are equivariantly formal and formal in the sense of Sullivan, in particular. Moreover, we give a short alternative proof of equivariant formality in the case of symmetric spaces with our new approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信