teichmuller空间中dehn捻格点的生长速率

IF 0.5 3区 数学 Q3 MATHEMATICS
Jiawei Han
{"title":"teichmuller空间中dehn捻格点的生长速率","authors":"Jiawei Han","doi":"10.1142/s179352532350053x","DOIUrl":null,"url":null,"abstract":"Athreya, Bufetov, Eskin and Mirzakhani have shown the number of mapping class group lattice points intersecting a closed ball of radius $R$ in Teichm\\\"{u}ller space is asymptotic to $e^{hR}$, where $h$ is the dimension of the Teichm\\\"{u}ller space. In contrast we show the number of Dehn twist lattice points intersecting a closed ball of radius $R$ is coarsely asymptotic to $e^{\\frac{h}{2}R}$. Moreover, we show the number multi-twist lattice points intersecting a closed ball of radius $R$ grows coarsely at least at the rate of $R \\cdot e^{\\frac{h}{2}R}$.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Growth rate of dehn twist lattice points in teichmuller space\",\"authors\":\"Jiawei Han\",\"doi\":\"10.1142/s179352532350053x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Athreya, Bufetov, Eskin and Mirzakhani have shown the number of mapping class group lattice points intersecting a closed ball of radius $R$ in Teichm\\\\\\\"{u}ller space is asymptotic to $e^{hR}$, where $h$ is the dimension of the Teichm\\\\\\\"{u}ller space. In contrast we show the number of Dehn twist lattice points intersecting a closed ball of radius $R$ is coarsely asymptotic to $e^{\\\\frac{h}{2}R}$. Moreover, we show the number multi-twist lattice points intersecting a closed ball of radius $R$ grows coarsely at least at the rate of $R \\\\cdot e^{\\\\frac{h}{2}R}$.\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s179352532350053x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s179352532350053x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

Athreya, Bufetov, Eskin和Mirzakhani证明了在Teichm\ {u}ller空间中与半径$R$的闭球相交的映射类群格点的个数渐近于$e^{hR}$,其中$h$是Teichm\ {u}ller空间的维数。与此相反,我们证明了与半径$R$的闭球相交的Dehn捻格点的个数大致渐近于$e^{\frac{h}{2}R}$。此外,我们证明了与半径$R$的封闭球相交的多重扭转点数至少以$R \cdot e^{\frac{h}{2}R}$的速率粗略增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth rate of dehn twist lattice points in teichmuller space
Athreya, Bufetov, Eskin and Mirzakhani have shown the number of mapping class group lattice points intersecting a closed ball of radius $R$ in Teichm\"{u}ller space is asymptotic to $e^{hR}$, where $h$ is the dimension of the Teichm\"{u}ller space. In contrast we show the number of Dehn twist lattice points intersecting a closed ball of radius $R$ is coarsely asymptotic to $e^{\frac{h}{2}R}$. Moreover, we show the number multi-twist lattice points intersecting a closed ball of radius $R$ grows coarsely at least at the rate of $R \cdot e^{\frac{h}{2}R}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信