作用于圆的群的交叉同构

IF 0.5 3区 数学 Q3 MATHEMATICS
Shuhei Maruyama
{"title":"作用于圆的群的交叉同构","authors":"Shuhei Maruyama","doi":"10.1142/s1793525324500092","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we construct a crossed homomorphism by using a group action on the circle and the Poincaré translation number. We relate it to the Euler class of the action in terms of the Hochschild–Serre spectral sequence. As an application, we answer a question of Calegari and Chen, which is on an explicit form of a certain crossed homomorphism on the mapping class group of the sphere minus a Cantor set.</p>","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A crossed homomorphism for groups acting on the circle\",\"authors\":\"Shuhei Maruyama\",\"doi\":\"10.1142/s1793525324500092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we construct a crossed homomorphism by using a group action on the circle and the Poincaré translation number. We relate it to the Euler class of the action in terms of the Hochschild–Serre spectral sequence. As an application, we answer a question of Calegari and Chen, which is on an explicit form of a certain crossed homomorphism on the mapping class group of the sphere minus a Cantor set.</p>\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525324500092\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525324500092","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用圆上的群作用和波恩卡莱平移数构建了一个交叉同态。我们用霍赫希尔德-塞尔谱序列将其与作用的欧拉类联系起来。作为应用,我们回答了 Calegari 和 Chen 提出的一个问题,即关于球面的映射类群减去一个康托集的某个交叉同构的明确形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A crossed homomorphism for groups acting on the circle

In this paper, we construct a crossed homomorphism by using a group action on the circle and the Poincaré translation number. We relate it to the Euler class of the action in terms of the Hochschild–Serre spectral sequence. As an application, we answer a question of Calegari and Chen, which is on an explicit form of a certain crossed homomorphism on the mapping class group of the sphere minus a Cantor set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信