{"title":"有界里奇曲率下的典型零点结构和规则极限上的雷芬伯格局部覆盖几何","authors":"Zuohai Jiang, Lingling Kong, Shicheng Xu","doi":"10.1142/s1793525323500607","DOIUrl":null,"url":null,"abstract":"<p>It is known that a closed collapsed Riemannian <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span>-manifold <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of bounded Ricci curvature and Reifenberg local covering geometry admits a nilpotent structure in the sense of Cheeger–Fukaya–Gromov with respect to a smoothed metric <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. We study the nilpotent structures over a regular limit space with optimal regularities that describe the collapsing of original metric <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi></math></span><span></span>, and prove that they are uniquely determined up to a conjugation by diffeomorphisms with bi-Lipschitz constant almost <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn></math></span><span></span>, and are equivalent to nilpotent structures arising from other nearby metrics <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>g</mi></mrow><mrow><mi>𝜖</mi></mrow></msub></math></span><span></span> with respect to <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>g</mi></mrow><mrow><mi>𝜖</mi></mrow></msub></math></span><span></span>’s sectional curvature bound.</p>","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"9 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canonical nilpotent structure under bounded Ricci curvature and Reifenberg local covering geometry over regular limits\",\"authors\":\"Zuohai Jiang, Lingling Kong, Shicheng Xu\",\"doi\":\"10.1142/s1793525323500607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is known that a closed collapsed Riemannian <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span>-manifold <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> of bounded Ricci curvature and Reifenberg local covering geometry admits a nilpotent structure in the sense of Cheeger–Fukaya–Gromov with respect to a smoothed metric <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. We study the nilpotent structures over a regular limit space with optimal regularities that describe the collapsing of original metric <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi></math></span><span></span>, and prove that they are uniquely determined up to a conjugation by diffeomorphisms with bi-Lipschitz constant almost <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn></math></span><span></span>, and are equivalent to nilpotent structures arising from other nearby metrics <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>g</mi></mrow><mrow><mi>𝜖</mi></mrow></msub></math></span><span></span> with respect to <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>g</mi></mrow><mrow><mi>𝜖</mi></mrow></msub></math></span><span></span>’s sectional curvature bound.</p>\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525323500607\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525323500607","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
众所周知,具有有界 Rci 曲率和 Reifenberg 局部覆盖几何的封闭坍缩黎曼 n 形(M,g),在 Cheeger-Fukaya-Gromov 意义上,相对于平滑度量 g(t) 存在一个无穷结构。我们研究了描述原始度量 g 的塌缩的具有最优正则性的正则极限空间上的无穷结构,并证明它们是唯一确定的,直到具有近 1 的双唇奇兹常数的差分变形的共轭为止,并且等价于由其他邻近度量 g𝜖 产生的关于 g𝜖 断面曲率约束的无穷结构。
Canonical nilpotent structure under bounded Ricci curvature and Reifenberg local covering geometry over regular limits
It is known that a closed collapsed Riemannian -manifold of bounded Ricci curvature and Reifenberg local covering geometry admits a nilpotent structure in the sense of Cheeger–Fukaya–Gromov with respect to a smoothed metric . We study the nilpotent structures over a regular limit space with optimal regularities that describe the collapsing of original metric , and prove that they are uniquely determined up to a conjugation by diffeomorphisms with bi-Lipschitz constant almost , and are equivalent to nilpotent structures arising from other nearby metrics with respect to ’s sectional curvature bound.
期刊介绍:
This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.