有界里奇曲率下的典型零点结构和规则极限上的雷芬伯格局部覆盖几何

IF 0.5 3区 数学 Q3 MATHEMATICS
Zuohai Jiang, Lingling Kong, Shicheng Xu
{"title":"有界里奇曲率下的典型零点结构和规则极限上的雷芬伯格局部覆盖几何","authors":"Zuohai Jiang, Lingling Kong, Shicheng Xu","doi":"10.1142/s1793525323500607","DOIUrl":null,"url":null,"abstract":"<p>It is known that a closed collapsed Riemannian <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span>-manifold <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of bounded Ricci curvature and Reifenberg local covering geometry admits a nilpotent structure in the sense of Cheeger–Fukaya–Gromov with respect to a smoothed metric <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. We study the nilpotent structures over a regular limit space with optimal regularities that describe the collapsing of original metric <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi></math></span><span></span>, and prove that they are uniquely determined up to a conjugation by diffeomorphisms with bi-Lipschitz constant almost <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn></math></span><span></span>, and are equivalent to nilpotent structures arising from other nearby metrics <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>g</mi></mrow><mrow><mi>𝜖</mi></mrow></msub></math></span><span></span> with respect to <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>g</mi></mrow><mrow><mi>𝜖</mi></mrow></msub></math></span><span></span>’s sectional curvature bound.</p>","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canonical nilpotent structure under bounded Ricci curvature and Reifenberg local covering geometry over regular limits\",\"authors\":\"Zuohai Jiang, Lingling Kong, Shicheng Xu\",\"doi\":\"10.1142/s1793525323500607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is known that a closed collapsed Riemannian <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span>-manifold <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> of bounded Ricci curvature and Reifenberg local covering geometry admits a nilpotent structure in the sense of Cheeger–Fukaya–Gromov with respect to a smoothed metric <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. We study the nilpotent structures over a regular limit space with optimal regularities that describe the collapsing of original metric <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi></math></span><span></span>, and prove that they are uniquely determined up to a conjugation by diffeomorphisms with bi-Lipschitz constant almost <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn></math></span><span></span>, and are equivalent to nilpotent structures arising from other nearby metrics <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>g</mi></mrow><mrow><mi>𝜖</mi></mrow></msub></math></span><span></span> with respect to <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>g</mi></mrow><mrow><mi>𝜖</mi></mrow></msub></math></span><span></span>’s sectional curvature bound.</p>\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525323500607\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525323500607","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,具有有界 Rci 曲率和 Reifenberg 局部覆盖几何的封闭坍缩黎曼 n 形(M,g),在 Cheeger-Fukaya-Gromov 意义上,相对于平滑度量 g(t) 存在一个无穷结构。我们研究了描述原始度量 g 的塌缩的具有最优正则性的正则极限空间上的无穷结构,并证明它们是唯一确定的,直到具有近 1 的双唇奇兹常数的差分变形的共轭为止,并且等价于由其他邻近度量 g𝜖 产生的关于 g𝜖 断面曲率约束的无穷结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canonical nilpotent structure under bounded Ricci curvature and Reifenberg local covering geometry over regular limits

It is known that a closed collapsed Riemannian n-manifold (M,g) of bounded Ricci curvature and Reifenberg local covering geometry admits a nilpotent structure in the sense of Cheeger–Fukaya–Gromov with respect to a smoothed metric g(t). We study the nilpotent structures over a regular limit space with optimal regularities that describe the collapsing of original metric g, and prove that they are uniquely determined up to a conjugation by diffeomorphisms with bi-Lipschitz constant almost 1, and are equivalent to nilpotent structures arising from other nearby metrics g𝜖 with respect to g𝜖’s sectional curvature bound.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信