Mahtab Kokabi, Muhammad Tayyab, Gulam M. Rather, Arastou Pournadali Khamseh, Daniel Cheng, Edward P. DeMauro, Mehdi Javanmard
{"title":"Integrating optical and electrical sensing with machine learning for advanced particle characterization","authors":"Mahtab Kokabi, Muhammad Tayyab, Gulam M. Rather, Arastou Pournadali Khamseh, Daniel Cheng, Edward P. DeMauro, Mehdi Javanmard","doi":"10.1007/s10544-024-00707-0","DOIUrl":"10.1007/s10544-024-00707-0","url":null,"abstract":"<div><p>Particle classification plays a crucial role in various scientific and technological applications, such as differentiating between bacteria and viruses in healthcare applications or identifying and classifying cancer cells. This technique requires accurate and efficient analysis of particle properties. In this study, we investigated the integration of electrical and optical features through a multimodal approach for particle classification. Machine learning classifier algorithms were applied to evaluate the impact of combining these measurements. Our results demonstrate the superiority of the multimodal approach over analyzing electrical or optical features independently. We achieved an average test accuracy of 94.9% by integrating both modalities, compared to 66.4% for electrical features alone and 90.7% for optical features alone. This highlights the complementary nature of electrical and optical information and its potential for enhancing classification performance. By leveraging electrical sensing and optical imaging techniques, our multimodal approach provides deeper insights into particle properties and offers a more comprehensive understanding of complex biological systems.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 2","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141080062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ajeet Singh Yadav, Fariba Malekpour Galogahi, Aditya Vashi, Du Tuan Tran, Gregor S. Kijanka, Haotian Cha, Kamalalayam Rajan Sreejith, Nam-Trung Nguyen
{"title":"Synthesis and active manipulation of magnetic liquid beads","authors":"Ajeet Singh Yadav, Fariba Malekpour Galogahi, Aditya Vashi, Du Tuan Tran, Gregor S. Kijanka, Haotian Cha, Kamalalayam Rajan Sreejith, Nam-Trung Nguyen","doi":"10.1007/s10544-024-00708-z","DOIUrl":"10.1007/s10544-024-00708-z","url":null,"abstract":"<div><p>We report the fabrication and characterisation of magnetic liquid beads with a solid magnetic shell and liquid core using microfluidic techniques. The liquid beads consist of a fluorinated oil core and a polymer shell with magnetite particles. The beads are generated in a flow-focusing polydimethylsiloxane (PDMS) device and cured by photo polymerisation. We investigated the response of the liquid beads to an external magnetic field by characterising their motion towards a permanent magnet. Magnetic sorting of liquid beads in a channel was achieved with 90% efficiency. The results show that the liquid beads can be controlled magnetically and have potential applications in digital microfluidics including nucleic acid amplification, drug delivery, cell culture, sensing, and tissue engineering. The present paper also discusses the magnetophoretic behaviour of the liquid bead by varying its mass and magnetite concentration in the shell. We also demonstrated the two-dimensional self-assembly of magnetic liquid beads for potential use in digital polymerase chain reaction and digital loop mediated isothermal amplification.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 2","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microfluidics as an emerging paradigm for assisted reproductive technology: A sperm separation perspective","authors":"Mohammadjavad Bouloorchi Tabalvandani, Zahra Saeidpour, Zahra Habibi, Saeed Javadizadeh, Seyed Ahmadreza Firoozabadi, Majid Badieirostami","doi":"10.1007/s10544-024-00705-2","DOIUrl":"10.1007/s10544-024-00705-2","url":null,"abstract":"<div><p>Millions of people are subject to infertility worldwide and one in every six people, regardless of gender, experiences infertility at some period in their life, according to the World Health Organization. Assisted reproductive technologies are defined as a set of procedures that can address the infertility issue among couples, culminating in the alleviation of the condition. However, the costly conventional procedures of assisted reproduction and the inherent vagaries of the processes involved represent a setback for its successful implementation. Microfluidics, an emerging tool for processing low-volume samples, have recently started to play a role in infertility diagnosis and treatment. Given its host of benefits, including manipulating cells at the microscale, repeatability, automation, and superior biocompatibility, microfluidics have been adopted for various procedures in assisted reproduction, ranging from sperm sorting and analysis to more advanced processes such as IVF-on-a-chip. In this review, we try to adopt a more holistic approach and cover different uses of microfluidics for a variety of applications, specifically aimed at sperm separation and analysis. We present various sperm separation microfluidic techniques, categorized as natural and non-natural methods. A few of the recent developments in on-chip fertilization are also discussed.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 2","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140669491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automated sample preparation for electrospray ionization mass spectrometry based on CLOCK-controlled autonomous centrifugal microfluidics","authors":"Masahiro Futami, Hiroki Naito, Satoshi Ninomiya, Lee Chuin Chen, Tomohiko Iwano, Kentaro Yoshimura, Yoshiaki Ukita","doi":"10.1007/s10544-024-00703-4","DOIUrl":"10.1007/s10544-024-00703-4","url":null,"abstract":"<div><p>We report a centrifugal microfluidic device that automatically performs sample preparation under steady-state rotation for clinical applications using mass spectrometry. The autonomous microfluidic device was designed for the control of liquid operation on centrifugal hydrokinetics (CLOCK) paradigm. The reported device was highly stable, with less than 7% variation with respect to the time of each unit operation (sample extraction, mixing, and supernatant extraction) in the preparation process. An agitation mechanism with bubbling was used to mix the sample and organic solvent in this device. We confirmed that the device effectively removed the protein aggregates from the sample, and the performance was comparable to those of conventional manual sample preparation procedures that use high-speed centrifugation. In addition, probe electrospray ionization mass spectrometry (PESI-MS) was performed to compare the device-treated and manually treated samples. The obtained PESI-MS spectra were analyzed by partial least squares discriminant analysis, and the preparation capability of the device was found to be equivalent to that of the conventional method.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 2","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-024-00703-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140562850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kirigami tripod-based electrode for the development of highly stretchable dengue aptasensor","authors":"Mohd. Rahil Hasan, Saumitra Singh, Pradakshina Sharma, Zaira Azmi, Agampreet Singh Dadial, Jagriti Narang","doi":"10.1007/s10544-024-00704-3","DOIUrl":"10.1007/s10544-024-00704-3","url":null,"abstract":"<div><p>Kirigami is one of the interesting paper art forms and the modified sub-class of origami. Kirigami paper art is widely employed in a variety of applications, and it is currently being used in biosensors because of its outstanding advantages. This is the first study on the use of a Kirigami-based aptasensor for DENV (Dengue virus)-antigen detection. In this study, the kirigami approach has been utilized to develop a stretchable, movable, and flexible sensor. The constructed stretchable-kirigami electrode helps in adjusting the connection of electrodes without disturbing the electrochemical cell zone during the experiment. To increase the sensitivity of this biosensor we have synthesized Ag-NPs (Silver nanoparticles) via chemical methods and characterized their results with the help of TEM & UV-Vis Spectroscopy. Different electrochemical approaches were used to validate the sensor response i.e., CV (Cyclic voltammetry) and LSV (Linear sweep voltammetry), which exhibited great detection capability towards dengue virus with the range of 0.1 µg/ml to 1000 µg/ml along with a detection limit of 0.1 µg/ml and showing no reactivity to the chikungunya virus antigen, making it more specific to the DENV antigen. Serum (healthy-human) was also successfully applied to validate the results of the constructed aptasensor. Integration of the Kirigami approach form with the electrochemical aptasensor that utilizes a 3-E setup (three-electrode setup) which is referred to as a tripod and collectively called Kirigami-tripod-based aptasensor. Thus, the developed integrated platform improves the sensors capabilities in terms of cost efficiency, high stretchability, and sensitivity.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 2","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140334184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protein-based microneedles for biomedical applications: A systematic review","authors":"Maedeh Barati, Shiva Hashemi, Mahsa Sayed Tabatabaei, Nasrin Zarei Chamgordani, Seyedeh Maryam Mortazavi, Hamid Reza Moghimi","doi":"10.1007/s10544-024-00701-6","DOIUrl":"10.1007/s10544-024-00701-6","url":null,"abstract":"<div><p>Microneedles are minimally-invasive devices with the unique capability of bypassing physiological barriers. Hence, they are widely used for different applications from drug/vaccine delivery to diagnosis and cosmetic fields. Recently, natural biopolymers (particularly carbohydrates and proteins) have garnered attention as safe and biocompatible materials with tailorable features for microneedle construction. Several review articles have dealt with carbohydrate-based microneedles. This review aims to highlight the less-noticed role of proteins through a systematic search strategy based on the PRISMA guideline from international databases of PubMed, Science Direct, Scopus, and Google Scholar. Original English articles with the keyword “microneedle(s)” in their titles along with at least one of the keywords “biopolymers, silk, gelatin, collagen, zein, keratin, fish-scale, mussel, and suckerin” were collected and those in which the proteins undertook a structural role were screened. Then, we focused on the structures and applications of protein-based microneedles. Also, the unique features of some protein biopolymers that make them ideal for microneedle construction (e.g., excellent mechanical strength, self-adhesion, and self-assembly), as well as the challenges associated with them were reviewed. Altogether, the proteins identified so far seem not only promising for the fabrication of “better” microneedles in the future but also inspiring for designing biomimetic structural biopolymers with ideal characteristics.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 2","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140011885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A rapid and low-cost platform for detection of bacterial based on microchamber PCR microfluidic chip","authors":"Zhenqing Li, Xiaolu Ma, Zhen Zhang, Xiaoyang Wang, Bo Yang, Jing Yang, Yuan Zeng, Xujun Yuan, Dawei Zhang, Yoshinori Yamaguchi","doi":"10.1007/s10544-024-00699-x","DOIUrl":"10.1007/s10544-024-00699-x","url":null,"abstract":"<div><p>Polymerase chain reaction (PCR) has been considered as the gold standard for detecting nucleic acids. The simple PCR system is of great significance for medical applications in remote areas, especially for the developing countries. Herein, we proposed a low-cost self-assembled platform for microchamber PCR. The working principle is rotating the chamber PCR microfluidic chip between two heaters with fixed temperature to solve the problem of low temperature variation rate. The system consists of two temperature controllers, a screw slide rail, a chamber array microfluidic chip and a self-built software. Such a system can be constructed at a cost of about US$60. The micro chamber PCR can be finished by rotating the microfluidic chip between two heaters with fixed temperature. Results demonstrated that the sensitivity of the temperature controller is 0.1℃. The relative error of the duration for the microfluidic chip was 0.02 s. Finally, we successfully finished amplification of the target gene of <i>Porphyromonas gingivalis</i> in the chamber PCR microfluidic chip within 35 min and on-site detection of its PCR products by fluorescence. The chip consisted of 3200 cylindrical chambers. The volume of reagent in each volume is as low as 0.628 nL. This work provides an effective method to reduce the amplification time required for micro chamber PCR.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 2","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140011884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stéphanie Boder-Pasche, Mustafa Demir, Sarah Heub, Manon Garzuel, Réal Ischer, Daniel Migliozzi, Siegfried Graf, Noa Schmid, H. Baris Atakan, Daria Gudkova, Daniel Alpern, Riccardo Dainese, Bart Deplancke, Gilles Weder
{"title":"Multi-well plate lid for single-step pooling of 96 samples for high-throughput barcode-based sequencing","authors":"Stéphanie Boder-Pasche, Mustafa Demir, Sarah Heub, Manon Garzuel, Réal Ischer, Daniel Migliozzi, Siegfried Graf, Noa Schmid, H. Baris Atakan, Daria Gudkova, Daniel Alpern, Riccardo Dainese, Bart Deplancke, Gilles Weder","doi":"10.1007/s10544-024-00702-5","DOIUrl":"10.1007/s10544-024-00702-5","url":null,"abstract":"<div><p>High-throughput transcriptomics is of increasing fundamental biological and clinical interest. The generation of molecular data from large collections of samples, such as biobanks and drug libraries, is boosting the development of new biomarkers and treatments. Focusing on gene expression, the transcriptomic market exploits the benefits of next-generation sequencing (NGS), leveraging RNA sequencing (RNA-seq) as standard for measuring genome-wide gene expression in biological samples. The cumbersome sample preparation, including RNA extraction, conversion to cDNA and amplification, prevents high-throughput translation of RNA-seq technologies. Bulk RNA barcoding and sequencing (BRB-seq) addresses this limitation by enabling sample preparation in multi-well plate format. Sample multiplexing combined with early pooling into a single tube reduces reagents consumption and manual steps. Enabling simultaneous pooling of all samples from the multi-well plate into one tube, our technology relies on smart labware: a pooling lid comprising fluidic features and small pins to transport the liquid, adapted to standard 96-well plates. Operated with standard fluidic tubes and pump, the system enables over 90% recovery of liquid in a single step in less than a minute. Large scale manufacturing of the lid is demonstrated with the transition from a milled polycarbonate/steel prototype into an injection molded polystyrene lid. The pooling lid demonstrated its value in supporting high-throughput barcode-based sequencing by pooling 96 different DNA barcodes directly from a standard 96-well plate, followed by processing within the single sample pool. This new pooling technology shows great potential to address medium throughput needs in the BRB-seq workflow, thereby addressing the challenge of large-scale and cost-efficient sample preparation for RNA-seq.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 2","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naser Sharafkhani, John M. Long, Scott D. Adams, Abbas Z. Kouzani
{"title":"A self-stiffening compliant intracortical microprobe","authors":"Naser Sharafkhani, John M. Long, Scott D. Adams, Abbas Z. Kouzani","doi":"10.1007/s10544-024-00700-7","DOIUrl":"10.1007/s10544-024-00700-7","url":null,"abstract":"<div><p>Utilising a flexible intracortical microprobe to record/stimulate neurons minimises the incompatibility between the implanted microprobe and the brain, reducing tissue damage due to the brain micromotion. Applying bio-dissolvable coating materials temporarily makes a flexible microprobe stiff to tolerate the penetration force during insertion. However, the inability to adjust the dissolving time after the microprobe contact with the cerebrospinal fluid may lead to inaccuracy in the microprobe positioning. Furthermore, since the dissolving process is irreversible, any subsequent positioning error cannot be corrected by re-stiffening the microprobe. The purpose of this study is to propose an intracortical microprobe that incorporates two compressible structures to make the microprobe both adaptive to the brain during operation and stiff during insertion. Applying a compressive force by an inserter compresses the two compressible structures completely, resulting in increasing the equivalent elastic modulus. Thus, instant switching between stiff and soft modes can be accomplished as many times as necessary to ensure high-accuracy positioning while causing minimal tissue damage. The equivalent elastic modulus of the microprobe during operation is ≈ 23 kPa, which is ≈ 42% less than the existing counterpart, resulting in ≈ 46% less maximum strain generated on the surrounding tissue under brain longitudinal motion. The self-stiffening microprobe and surrounding neural tissue are simulated during insertion and operation to confirm the efficiency of the design. Two-photon polymerisation technology is utilised to 3D print the proposed microprobe, which is experimentally validated and inserted into a lamb’s brain without buckling.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861748/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SPIONs: Superparamagnetic iron oxide-based nanoparticles for the delivery of microRNAi-therapeutics in cancer","authors":"Goknur Kara, Bulent Ozpolat","doi":"10.1007/s10544-024-00698-y","DOIUrl":"10.1007/s10544-024-00698-y","url":null,"abstract":"<div><p>Non-coding RNA (ncRNA)-based therapeutics that induce RNA interference (RNAi), such as microRNAs (miRNAs), have drawn considerable attention as a novel class of targeted cancer therapeutics because of their capacity to specifically target oncogenes/protooncogenes that regulate key signaling pathways involved in carcinogenesis, tumor growth and progression, metastasis, cell survival, proliferation, angiogenesis, and drug resistance. However, clinical translation of miRNA-based therapeutics, in particular, has been challenging due to the ineffective delivery of ncRNA molecules into tumors and their uptake into cancer cells. Recently, superparamagnetic iron oxide-based nanoparticles (SPIONs) have emerged as highly effective and efficient for the delivery of therapeutic RNAs to malignant tissues, as well as theranostic (therapy and diagnostic) applications, due to their excellent biocompatibility, magnetic responsiveness, broad functional surface modification, safety, and biodistribution profiles. This review highlights recent advances in the use of SPIONs for the delivery of ncRNA-based therapeutics with an emphasis on their synthesis and coating strategies. Moreover, the advantages and current limitations of SPIONs and their future perspectives are discussed.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139696602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}