Pervasive and Mobile Computing最新文献

筛选
英文 中文
An efficient estimator for source localization in WSNs using RSSD and TDOA measurements 使用 RSSD 和 TDOA 测量的 WSN 信号源定位高效估算器
IF 4.3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-05-11 DOI: 10.1016/j.pmcj.2024.101936
Yuanyuan Zhang , T. Aaron Gulliver , Huafeng Wu , Xiaojun Mei , Jiping Li , Fuqiang Lu , Weijun Wang
{"title":"An efficient estimator for source localization in WSNs using RSSD and TDOA measurements","authors":"Yuanyuan Zhang ,&nbsp;T. Aaron Gulliver ,&nbsp;Huafeng Wu ,&nbsp;Xiaojun Mei ,&nbsp;Jiping Li ,&nbsp;Fuqiang Lu ,&nbsp;Weijun Wang","doi":"10.1016/j.pmcj.2024.101936","DOIUrl":"10.1016/j.pmcj.2024.101936","url":null,"abstract":"<div><p>Range-based localization has received considerable attention in wireless sensor networks due to its ability to efficiently locate the unknown source of a signal. However, the localization accuracy with a single set of measurements may be inadequate, especially in dynamic and noisy environments. To mitigate this problem, received signal strength difference (RSSD) and time difference of arrival (TDOA) measurements are used to develop an efficient estimator to reduce the bias and improve localization accuracy. First, the RSSD/TDOA-based maximum likelihood (ML) localization problem is transformed into a hybrid information nonnegative constrained least squares (HI-NCLS) framework. Then, this framework is used to develop an effective bias-reduction localization approach (BRLA) with a two-step linearization process. The first step employs a linear solving method (LSM) which exploits an active set method to obtain a sub-optimal estimator. The second step uses a bias reduction method (BRM) to mitigate the correlation from linearization and a weighted instrumental variables matrix (IVM) which is weakly correlated with the noise but strongly correlated with the data matrix (DM) is used in place of the DM. Performance results are presented which demonstrate that the proposed BRLA provides better localization performance than state-of-the-art methods in the literature.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141051391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Traffic count estimation using crowd-sourced trajectory data in the absence of dedicated infrastructure 在没有专用基础设施的情况下利用人群轨迹数据估算交通流量
IF 4.3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-05-07 DOI: 10.1016/j.pmcj.2024.101935
Subhrasankha Dey , Martin Tomko , Stephan Winter , Niloy Ganguly
{"title":"Traffic count estimation using crowd-sourced trajectory data in the absence of dedicated infrastructure","authors":"Subhrasankha Dey ,&nbsp;Martin Tomko ,&nbsp;Stephan Winter ,&nbsp;Niloy Ganguly","doi":"10.1016/j.pmcj.2024.101935","DOIUrl":"https://doi.org/10.1016/j.pmcj.2024.101935","url":null,"abstract":"<div><p>Traffic count (or link count) data represents the cumulative traffic in the lanes between two consecutive signalised intersections. Typically, dedicated infrastructure-based sensors are required for link count data collection. The lack of adequate data collection infrastructure leads to lack of link count data for numerous cities, particularly those in low- and middle-income countries. Here, we address the research problem of link count estimation using crowd-sourced trajectory data to reduce the reliance on any dedicated infrastructure. A stochastic queue discharge model is developed to estimate link counts at signalised intersections taking into account the sparsity and low penetration rate (i.e., the percentage of vehicles with known trajectory) brought on by crowdsourcing. The issue of poor penetration rate is tackled by constructing synthetic trajectories entirely from known trajectories. The proposed model further provides a methodology for estimating the delay resulting from the start-up loss time of the vehicles in the queue under unknown traffic conditions. The proposed model is implemented and validated with real-world data at a signalised intersection in Kolkata, India. Validation results demonstrate that the model can estimate link count with an average accuracy score of 82% with a very low penetration rate (not in the city, but at the intersection) of 5.09% in unknown traffic conditions, which is yet to be accomplished in the current state-of-the-art.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574119224000610/pdfft?md5=d66231587fa7d814a717bc910b36c35b&pid=1-s2.0-S1574119224000610-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CMFogV: Proactive content migration for multi-level fog computing CMFogV:多级雾计算的主动内容迁移
IF 4.3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-05-03 DOI: 10.1016/j.pmcj.2024.101933
Marcelo C. Araújo, Luiz F. Bittencourt
{"title":"CMFogV: Proactive content migration for multi-level fog computing","authors":"Marcelo C. Araújo,&nbsp;Luiz F. Bittencourt","doi":"10.1016/j.pmcj.2024.101933","DOIUrl":"https://doi.org/10.1016/j.pmcj.2024.101933","url":null,"abstract":"<div><p>The popularization of Fog Computing has provided the foundation for a computational environment better suited to applications demanding low communication latency. However, Fog environments has limited resources and restricted coverage areas, besides the user mobility that needs continuous migrations to maintain accessible and nearby content. To enable applications to harness the low latency offered by Fog, it is crucial to develop migration strategies capable of addressing the complexities of the Fog environment while ensuring content availability regardless of user location. This work proposes CMFog<span><math><msub><mrow></mrow><mrow><mi>V</mi></mrow></msub></math></span>, a proactive content migration strategy that leverages mobility prediction in a multi-level fog. Our results show that CMFog<span><math><msub><mrow></mrow><mrow><mi>V</mi></mrow></msub></math></span> is able to provide enhanced flexibility in the migration decision process across a wide diversity of scenario.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140893235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A neighbor discovery protocol with adaptive collision alleviation for wireless robotic networks 针对无线机器人网络的具有自适应碰撞缓解功能的邻居发现协议
IF 4.3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-05-03 DOI: 10.1016/j.pmcj.2024.101934
Zhiyong Lin , Congming Yi , Zongheng Wei , Jianfeng Wen , Qingji Wen , Qinglin Liu , Hai Liu
{"title":"A neighbor discovery protocol with adaptive collision alleviation for wireless robotic networks","authors":"Zhiyong Lin ,&nbsp;Congming Yi ,&nbsp;Zongheng Wei ,&nbsp;Jianfeng Wen ,&nbsp;Qingji Wen ,&nbsp;Qinglin Liu ,&nbsp;Hai Liu","doi":"10.1016/j.pmcj.2024.101934","DOIUrl":"https://doi.org/10.1016/j.pmcj.2024.101934","url":null,"abstract":"<div><p>Recently, several movement control algorithms have been proposed to move robots to the desired locations and complete various collaborative tasks. These algorithms usually require information exchange among robots, which in turn relies on efficient neighbor discovery. However, neighbor discovery of robots is a challenging problem due to limited communication range and beacon collision. Here, how to set the time slot length and contention window to alleviate the beacon collisions is a major issue: too large or too small slot length and contention window values cannot achieve good performance in the robotic network. Therefore, we propose a neighbor discovery protocol with an adaptive collision alleviation mechanism, i.e. ND-ACA. ND-ACA adopts a simple mechanism to detect and avoid potential collisions before sending beacon, and adaptively adjusts both slot length and backoff window according to the number of historical beacon collections and beacon collisions. Extensive simulation results show the efficiency of our proposed approach. To the best of our knowledge, this is the first work in the literature that explore the joint implementation effects that simultaneously consider the robot mobility model and neighbor discovery.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140843787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reliable and adaptive computation offload strategy with load and cost coordination for edge computing 针对边缘计算的可靠自适应计算卸载策略与负载和成本协调
IF 4.3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-04-30 DOI: 10.1016/j.pmcj.2024.101932
Weicheng Tang , Donghui Gao , Siyu Yu , Jianbo Lu , Zhiyong Wei , Zhanrong Li , Ningjiang Chen
{"title":"Reliable and adaptive computation offload strategy with load and cost coordination for edge computing","authors":"Weicheng Tang ,&nbsp;Donghui Gao ,&nbsp;Siyu Yu ,&nbsp;Jianbo Lu ,&nbsp;Zhiyong Wei ,&nbsp;Zhanrong Li ,&nbsp;Ningjiang Chen","doi":"10.1016/j.pmcj.2024.101932","DOIUrl":"https://doi.org/10.1016/j.pmcj.2024.101932","url":null,"abstract":"<div><p>There are several important factors to consider in edge computing systems including latency, reliability, power consumption, and queue load. Task replication requires additional energy costs in mobile edge offloading scenarios based on master-slave replication for fault tolerance. Excessive task offloading may lead to a sharp increase in the total energy consumption of the system including replication costs. Conversely, new tasks cannot enter the waiting queue and are lost, resulting in reliability issues. This paper proposes an adaptive task offloading strategy for balancing the edge node queue load and offloading cost (Lyapunov and Differential Evolution based Offloading schedule strategy, LDEO). The LDEO strategy innovatively customizes the Lyapunov drift-plus-penalty function by incorporating replication redundancy offloading costs to establish a balance model between the queue load and offloading cost. The LDEO strategy computes the optimal offloading decisions with dynamic adjustment characteristics by integrating a low-complexity differential evolution method, aiming to find the optimal balance point that minimizes the offloading cost while maintaining reliability performance. The experimental results show that compared with the existing strategies, LDEO strategy effectively reduces the redundancy of fault tolerance cost and the waiting time under the condition of ensuring that the task will not be discarded over time. It stabilizes the queue length in a reasonable range, controls the waiting time and loss rate of tasks, reduces the extra energy consumption paid by replication redundancy, and effectively realizes the optimal balance under multiple conditions.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141068466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SmAuto: A domain-specific-language for application development in smart environments SmAuto:用于智能环境应用程序开发的特定领域语言
IF 4.3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-04-21 DOI: 10.1016/j.pmcj.2024.101931
Konstantinos Panayiotou, Constantine Doumanidis, Emmanouil Tsardoulias, Andreas L. Symeonidis
{"title":"SmAuto: A domain-specific-language for application development in smart environments","authors":"Konstantinos Panayiotou,&nbsp;Constantine Doumanidis,&nbsp;Emmanouil Tsardoulias,&nbsp;Andreas L. Symeonidis","doi":"10.1016/j.pmcj.2024.101931","DOIUrl":"10.1016/j.pmcj.2024.101931","url":null,"abstract":"<div><p>A common problem in the development of Internet-of-Things (IoT) and Cyber-Physical System (CPS) applications is the complexity of these domains, due to their hybrid and distributed nature in multiple layers (hardware, network, communication, application etc.). Apart from other issues, this inherent complexity often gives room for implementation errors, which can be in many cases fatal and drive the application and/or the system to undesired states. The current work aspires to alleviate this problem by introducing a low-code approach for building IoT and CPS applications. We argue that, through the proposed approach it is possible to lower development time and risk (errors/bug-related ones) and allow a wide range of end-users to build and monitor applications for state-of-the-art domains, such as smart home and smart industry. In this context, Model-Driven Engineering (MDE) approaches are explored and <em>SmAuto</em>, a Domain-specific Language (DSL) is proposed for creating and executing automation tasks for smart environments. Through <em>SmAuto</em> it is possible to handle the heterogeneity and complexity issues of the IoT and CPS domains, this way allowing end-users are non-technical application experts to build well-designed and properly functioning smart applications. The proposed DSL implements a Sense-Think-Act-Communicate model for smart environments and enables the creation, validation, and dynamic execution of composite automation models in physical, virtual and hybrid environments, while it also enables automated code generation of virtual entities for verification purposes. By using layered abstractions to automate the development process, end-users can concentrate on the real problem instead of dwelling into technical details, thus increasing their productivity. The results of the empirical evaluation and the comparison to existing approaches show that <em>SmAuto</em> can make application development more rigorous, improves productivity of end-users including non-experts, i.e. citizen developers and satisfies several functional and non-functional requirements of modern DSLs, such as tool support, modular deployment, reusability, availability and extensibility.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140790904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MotionID: Towards practical behavioral biometrics-based implicit user authentication on smartphones MotionID:在智能手机上实现实用的基于行为生物识别技术的隐式用户身份验证
IF 4.3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-04-03 DOI: 10.1016/j.pmcj.2024.101922
Mohsen Ali Alawami , Tamer Abuhmed , Mohammed Abuhamad , Hyoungshick Kim
{"title":"MotionID: Towards practical behavioral biometrics-based implicit user authentication on smartphones","authors":"Mohsen Ali Alawami ,&nbsp;Tamer Abuhmed ,&nbsp;Mohammed Abuhamad ,&nbsp;Hyoungshick Kim","doi":"10.1016/j.pmcj.2024.101922","DOIUrl":"https://doi.org/10.1016/j.pmcj.2024.101922","url":null,"abstract":"<div><p>Traditional one-time authentication mechanisms cannot authenticate smartphone users’ identities throughout the session — the concept of using behavioral-based biometrics captured by the built-in motion sensors and touch data is a candidate to solve this issue. Many studies proposed solutions for behavioral-based continuous authentication; however, they are still far from practicality and generality for real-world usage. To date, no commercially deployed implicit user authentication scheme exists because most of those solutions were designed to improve detection accuracy without addressing real-world deployment requirements. To bridge this gap, we tackle the limitations of existing schemes and reach towards developing a more practical implicit authentication scheme, dubbed MotionID, based on a one-class detector using behavioral data from motion sensors when users touch their smartphones. Compared with previous studies, our work addresses the following challenges: ① <em>Global mobile average</em> to dynamically adjust the sampling rate for sensors on any device and mitigate the impact of using sensors’ fixed sampling rate; ② <em>Over-all-apps</em> to authenticate a user across all the mobile applications, not only on-specific application; ③ <em>Single-device-evaluation</em> to measure the performance with multiple users’ (i.e., genuine users and imposters) data collected from the same device; ④ <em>Rapid authentication</em> to quickly identify users’ identities using a few samples collected within short durations of touching (1–5 s) the device; ⑤ <em>Unconditional settings</em> to collect sensor data from real-world smartphone usage rather than a laboratory study. To show the feasibility of MotionID for those challenges, we evaluated the performance of MotionID with ten users’ motion sensor data on five different smartphones under various settings. Our results show the impracticality of using a <em>fixed sampling rate</em> across devices that most previous studies have adopted. MotionID is able to authenticate users with an F1-score up to 98.5% for some devices under practical requirements and an F1-score up to roughly 90% when considering the drift concept and rapid authentication settings. Finally, we investigate time efficiency, power consumption, and memory usage considerations to examine the practicality of MotionID.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140539084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defending dominant cooperative probabilistic attack in CRNs by JS-divergence-based improved reputation algorithm 通过基于 JS-发散的改进信誉算法防御 CRN 中的主导合作概率攻击
IF 4.3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-03-27 DOI: 10.1016/j.pmcj.2024.101921
Lingling Chen , Xuan Shen , Xiaohui Zhao , Ziwei Wang , Wei He , Guoji Xu , Yiyang Chen
{"title":"Defending dominant cooperative probabilistic attack in CRNs by JS-divergence-based improved reputation algorithm","authors":"Lingling Chen ,&nbsp;Xuan Shen ,&nbsp;Xiaohui Zhao ,&nbsp;Ziwei Wang ,&nbsp;Wei He ,&nbsp;Guoji Xu ,&nbsp;Yiyang Chen","doi":"10.1016/j.pmcj.2024.101921","DOIUrl":"10.1016/j.pmcj.2024.101921","url":null,"abstract":"<div><p>Rapid advances in wireless communication services has made limited spectrum resources increasingly scarce. One promising solution for enhancing spectrum utilization is cooperative spectrum sensing (CSS) in cognitive radio networks (CRNs). However CSS is vulnerable to Byzantine attack. Current researches show that Byzantine attack is easily defended for their fixed attack probability. In this context, we propose an improved attack model called the dominated cooperative probabilistic attack (DCPA) model in the actual situation, building upon the generalized collaborative probabilistic Byzantine attack model. This DCPA model contains auxiliary cooperative attackers (ACAs) who launch attacks and a dominant attacker (DA) who determines ACAs’ attack probability intervals based on their respective credibility. The DCPA model allows ACAs to flexibly launch attacks, without being identified by the traditional reputation defense algorithm, significantly compromising the sensing performance of CSS. To successfully resist the threat posed by the DCPA model to CSS, we propose a JS-divergence-based improved reputation algorithm that can distinguish honest users (HUs) from attackers. This algorithm analyzes two consecutive sensing reports to identify differences in sensing behavior between HUs and attackers. Through Python simulation analysis, we demonstrate that, compared to the generalized cooperative probabilistic attack (CPA) model and the attack-free CSS (AFC) model, the proposed DCPA model is more concealed and significantly more disruptive to the performance of traditional reputation defense algorithms. Furthermore, our approach greatly enhances the performance of CSS by promoting the participation of HUs and suppressing attackers during the final data fusion. And also compared with the PAM2 algorithm, the conventional voting rule (CVR) algorithm and the traditional reputation defense algorithm, our proposed algorithm improves the detection performance by at least 7%, 15% and 50%.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140403293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feasibility and reliability of peercloud in vehicular networks: A comprehensive study 车载网络中对等云的可行性和可靠性:综合研究
IF 4.3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-03-26 DOI: 10.1016/j.pmcj.2024.101920
Xiaomei Zhang, Zack Stiltner
{"title":"Feasibility and reliability of peercloud in vehicular networks: A comprehensive study","authors":"Xiaomei Zhang,&nbsp;Zack Stiltner","doi":"10.1016/j.pmcj.2024.101920","DOIUrl":"https://doi.org/10.1016/j.pmcj.2024.101920","url":null,"abstract":"<div><p>Advanced computing capabilities embedded in modern vehicles enable them to accommodate a variety of intelligent transportation systems and real-world applications that help improve driving safety and compliance with road regulations. However, some of these applications are computationally demanding, and the local processing capabilities of vehicles may not always be enough to support them. To address this issue, existing research has proposed offloading the excessive workload to other computing facilities, such as nearby base stations, roadside units, or remote cloud servers. Still, these facilities have several limitations, including frequent unavailability, congestion, and high fees. In this paper, we explore a more pervasive and cost-effective solution: offloading excessive workloads to nearby peer vehicles via peer-to-peer connections. This approach, referred to as <em>peercloud-vehicle</em>, is an extension of the <em>peercloud</em> approach, which has been proposed for mobile social networks in the literature. The objective of this work is to have a comprehensive study on the feasibility and reliability of vehicle-to-vehicle offloading. First, we analyze two real-world vehicular network datasets to study the robustness of the vehicle contacts and estimate contact durations with deep learning-based regression methods. Second, we design reliable vehicle-to-vehicle offloading approaches based on two optimization objectives: <em>min-delay</em> task offloading to minimize the overall execution delay, and <em>cost-aware</em> task offloading to minimize the cost of task offloading. Experimental results based on real-world datasets demonstrate that <em>peercloud-vehicle</em> significantly outperforms existing approaches.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140309565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy-efficient indoor hybrid deployment strategy for 5G mobile small-cell base stations using JAFR Algorithm 使用 JAFR 算法的 5G 移动小蜂窝基站节能室内混合部署策略
IF 4.3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-03-25 DOI: 10.1016/j.pmcj.2024.101918
Yong Shen , Yu Chen , Hongwei Kang, Xingping Sun, Qingyi Chen
{"title":"Energy-efficient indoor hybrid deployment strategy for 5G mobile small-cell base stations using JAFR Algorithm","authors":"Yong Shen ,&nbsp;Yu Chen ,&nbsp;Hongwei Kang,&nbsp;Xingping Sun,&nbsp;Qingyi Chen","doi":"10.1016/j.pmcj.2024.101918","DOIUrl":"https://doi.org/10.1016/j.pmcj.2024.101918","url":null,"abstract":"<div><p>In the context of 5th-generation (5G) mobile communication technology, deploying indoor small-cell base stations (SBS) to serve visitors has become common. However, indoor SBS is constrained by factors such as service capacity, signal interference, and structural layout. Merchants within large buildings frequently host diverse activities to attract visitors, significantly increasing indoor traffic and crowd-gathering phenomenon. Consequently, SBS faces challenges of excessive energy consumption, compromised communication quality, and an inability to provide service to all visitors. Merchants aim to deploy SBS that can effectively curtail energy consumption costs while fulfilling visitor needs. However, due to the intermittent nature of high footfall situations, employing additional fixed SBS is not economically viable. Therefore, we address the challenge of maintaining service quality and mitigating energy consumption of SBS during footfall fluctuations by proposing an SBS model with a dynamic sleep mechanism. We simulate the internal structure of a three-dimensional (3D) building and the footfall over time. Within this model, we leverage the flexibility of mobile small-cell base stations (MSBS) to seamlessly traverse service regions. We compute the transmission power and location of SBS and MSBS based on energy efficiency (EE), combining their strengths to tackle the challenge. This approach maintains SBS communication quality while curbing energy consumption. We attain the optimal hybrid deployment strategy by enhancing the adaptive differential evolution with optional external archive (JADE) algorithm and incorporating the final fitness formula, the adaptive ranking mutation operator strategy, and the disorder replacement strategy (DRS) in it to form the proposed joint adaptive fusion with ranking (JAFR) algorithm. Our comparative simulation experiments demonstrate the effectiveness of JAFR in addressing the challenges against conventional methods, recent differential evolution algorithms, and mobile base station (MBS) deployment approaches posed by this model. The results indicate that the JAFR algorithm yields superior SBS deployment strategies in most cases.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140339744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信