Jun Hu , Feiyan Cheng , Meng Liu , Xuanle Xu , Xiaojing Li
{"title":"MicroFallNet:用于智能手环上的实时跌倒检测的轻量级模型","authors":"Jun Hu , Feiyan Cheng , Meng Liu , Xuanle Xu , Xiaojing Li","doi":"10.1016/j.pmcj.2025.102046","DOIUrl":null,"url":null,"abstract":"<div><div>Falls are a major public health concern for the aging population, leading to significant injuries, loss of independence, and increased healthcare costs. While wearable devices present promising solutions, existing algorithms are often hindered by the limitations of microcontroller units (MCU) in terms of computational power, memory, and energy consumption. To overcome these challenges, we introduce MicroFallNet, a lightweight convolutional neural network designed for accurate and efficient fall detection. MicroFallNet features a novel FireModel architecture, incorporating Squeeze and Expand layers to optimize computational efficiency and enhance feature extraction. The proposed algorithm demonstrates superior performance on the UMAFALL and FallAllD datasets, achieving geometric mean accuracies of 97.91 % and 97.86 %, respectively, significantly surpassing traditional methods. Additionally, MicroFallNet showcases excellent deployment efficiency across various microcontrollers, particularly excelling on the ESP32 smart wristband platform, where it achieves an inference time of just 30.3 milliseconds. This capability makes MicroFallNet ideally suited for real-time fall detection applications, advancing the development of wearable devices for the elderly and contributing substantially to the field of smart health monitoring. Our code will be publicly available at <span><span>https://github.com/qwer12330/MicroFallNet-A-Lightweight-Model-for-Real-Time-Fall-Detection-on-Smart-Wristbands-Using-Sm</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"109 ","pages":"Article 102046"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MicroFallNet: A lightweight model for real-time fall detection on smart wristbands\",\"authors\":\"Jun Hu , Feiyan Cheng , Meng Liu , Xuanle Xu , Xiaojing Li\",\"doi\":\"10.1016/j.pmcj.2025.102046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Falls are a major public health concern for the aging population, leading to significant injuries, loss of independence, and increased healthcare costs. While wearable devices present promising solutions, existing algorithms are often hindered by the limitations of microcontroller units (MCU) in terms of computational power, memory, and energy consumption. To overcome these challenges, we introduce MicroFallNet, a lightweight convolutional neural network designed for accurate and efficient fall detection. MicroFallNet features a novel FireModel architecture, incorporating Squeeze and Expand layers to optimize computational efficiency and enhance feature extraction. The proposed algorithm demonstrates superior performance on the UMAFALL and FallAllD datasets, achieving geometric mean accuracies of 97.91 % and 97.86 %, respectively, significantly surpassing traditional methods. Additionally, MicroFallNet showcases excellent deployment efficiency across various microcontrollers, particularly excelling on the ESP32 smart wristband platform, where it achieves an inference time of just 30.3 milliseconds. This capability makes MicroFallNet ideally suited for real-time fall detection applications, advancing the development of wearable devices for the elderly and contributing substantially to the field of smart health monitoring. Our code will be publicly available at <span><span>https://github.com/qwer12330/MicroFallNet-A-Lightweight-Model-for-Real-Time-Fall-Detection-on-Smart-Wristbands-Using-Sm</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49005,\"journal\":{\"name\":\"Pervasive and Mobile Computing\",\"volume\":\"109 \",\"pages\":\"Article 102046\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pervasive and Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574119225000355\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119225000355","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
MicroFallNet: A lightweight model for real-time fall detection on smart wristbands
Falls are a major public health concern for the aging population, leading to significant injuries, loss of independence, and increased healthcare costs. While wearable devices present promising solutions, existing algorithms are often hindered by the limitations of microcontroller units (MCU) in terms of computational power, memory, and energy consumption. To overcome these challenges, we introduce MicroFallNet, a lightweight convolutional neural network designed for accurate and efficient fall detection. MicroFallNet features a novel FireModel architecture, incorporating Squeeze and Expand layers to optimize computational efficiency and enhance feature extraction. The proposed algorithm demonstrates superior performance on the UMAFALL and FallAllD datasets, achieving geometric mean accuracies of 97.91 % and 97.86 %, respectively, significantly surpassing traditional methods. Additionally, MicroFallNet showcases excellent deployment efficiency across various microcontrollers, particularly excelling on the ESP32 smart wristband platform, where it achieves an inference time of just 30.3 milliseconds. This capability makes MicroFallNet ideally suited for real-time fall detection applications, advancing the development of wearable devices for the elderly and contributing substantially to the field of smart health monitoring. Our code will be publicly available at https://github.com/qwer12330/MicroFallNet-A-Lightweight-Model-for-Real-Time-Fall-Detection-on-Smart-Wristbands-Using-Sm.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.