Pervasive and Mobile Computing最新文献

筛选
英文 中文
A controllability method on the social Internet of Things (SIoT) network 社会物联网(SIoT)网络的可控性方法
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-09-26 DOI: 10.1016/j.pmcj.2024.101992
{"title":"A controllability method on the social Internet of Things (SIoT) network","authors":"","doi":"10.1016/j.pmcj.2024.101992","DOIUrl":"10.1016/j.pmcj.2024.101992","url":null,"abstract":"<div><div>In recent years, one type of complex network called the Social Internet of Things (SIoT) has attracted the attention of researchers. Controllability is one of the important problems in complex networks and it has essential applications in social, biological, and technical networks. Applying this problem can also play an important role in the control of social smart cities, but it has not yet been defined as a specific problem on SIoT, and no solution has been provided for it. This paper addresses the controllability problem of the temporal SIoT network. In this regard, first, a definition for the temporal SIoT network is provided. Then, the unique relationships of this network are defined and modeled formally. In the following, the Controllability problem is applied to the temporal SIoT network (CSIoT) to identify the Minimum Driver nodes Set (MDS). Then proposed CSIoT is compared with the state-of-the-art methods for performance analysis. In the obtained results, the heterogeneity (different types, brands, and models) has been investigated. Also, 69.80 % of the SIoT sub-graphs nodes have been identified as critical driver nodes in 152 different sets. The proposed controllability deals with network control in a distributed manner.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
INLEC: An involutive and low energy lightweight block cipher for internet of things INLEC: 适用于物联网的非连续低能耗轻量级区块密码
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-09-23 DOI: 10.1016/j.pmcj.2024.101991
{"title":"INLEC: An involutive and low energy lightweight block cipher for internet of things","authors":"","doi":"10.1016/j.pmcj.2024.101991","DOIUrl":"10.1016/j.pmcj.2024.101991","url":null,"abstract":"<div><div>The Internet of Things (IoT) has emerged as a pivotal force in the global technological revolution and industrial transformation. Despite its advancements, IoT devices continue to face significant security challenges, particularly during data transmission, and are often constrained by limited battery life and energy resources. To address these challenges, a low energy lightweight block cipher (INLEC) is proposed to mitigate data leakage in IoT devices. In addition, the Structure and Components INvolution (SCIN) design is introduced. It is constructed using two similar round functions to achieve front–back symmetry. This design ensures coherence throughout the INLEC encryption and decryption processes and addresses the increased resource consumption during the decryption phase in Substitution Permutation Networks (SPN). Furthermore, a low area S-box is generated through a hardware gate-level circuit search method combined with Genetic Programming (GP). This optimization leads to a 47.02% reduction in area compared to the <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of Midori, using UMC <span><math><mrow><mn>0</mn><mo>.</mo><mn>18</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> technology. Moreover, a chaotic function is used to generate the optimal nibble-based involutive permutation, further enhancing its efficiency. In terms of performs, the energy consumption for both encryption and decryption with INLEC is 6.88 <span><math><mi>μ</mi></math></span>J/bit, representing 25.21% reduction compared to Midori. Finally, INLEC is implemented using STM32L475 PanDuoLa and Nexys A7 FPGA development boards, establishing an encryption platform for IoT devices. This platform provides functions for data acquisition, transmission, and encryption.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure distribution based 2D in-bed keypoint prediction under interfered scenes 干扰场景下基于压力分布的二维床内关键点预测
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-09-20 DOI: 10.1016/j.pmcj.2024.101979
{"title":"Pressure distribution based 2D in-bed keypoint prediction under interfered scenes","authors":"","doi":"10.1016/j.pmcj.2024.101979","DOIUrl":"10.1016/j.pmcj.2024.101979","url":null,"abstract":"<div><div>In-bed pose estimation holds significant potential in various domains, including healthcare, sleep studies, and smart homes. Pressure-sensitive bed sheets have emerged as a promising solution for addressing this task considering the advantages of convenience, comfort, and privacy protection. However, existing studies primarily rely on ideal datasets that do not consider the presence of common daily objects such as pillows and quilts referred to as interference, which can significantly impact the pressure distribution. As a result, there is still a gap between the models trained with ideal data and the real-life application. Besides the end-to-end training approach, one potential solution is to recognize the interference and fuse the interference information to the model during training. In this study, we created a well-annotated dataset, consisting of eight in-bed scenes and four common types of interference: pillows, quilts, a laptop, and a package. To facilitate the analysis, the pixels in the pressure image were categorized into five classes based on the relative position between the interference and the human. We then evaluated the performance of five neural network models for pixel-level interference recognition. The best-performing model achieved an accuracy of 80.0% in recognizing the five categories. Subsequently, we validated the utility of interference recognition in improving pose estimation accuracy. The ideal model initially shows an average joint position error of up to 30.59 cm and a Percentage of Correct Keypoints (PCK) of 0.332 on data from scenes with interferences. After retraining on data including interference, the error is reduced to 13.54 cm and the PCK increases to 0.747. By integrating interference recognition information, either by excluding the parts of the interference or using the recognition results as input, the error can be further minimized to 12.44 cm and the PCK can be maximized up to 0.777. Our findings represent an initial step towards the practical deployment of pressure-sensitive bed sheets in everyday life.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blockchain-enhanced efficient and anonymous certificateless signature scheme and its application 区块链增强型高效匿名无证书签名方案及其应用
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-09-19 DOI: 10.1016/j.pmcj.2024.101990
{"title":"Blockchain-enhanced efficient and anonymous certificateless signature scheme and its application","authors":"","doi":"10.1016/j.pmcj.2024.101990","DOIUrl":"10.1016/j.pmcj.2024.101990","url":null,"abstract":"<div><div>Although the Internet of Things (IoT) brings efficiency and convenience to various aspects of people’s lives, security and privacy concerns persist as significant challenges. Certificateless Signatures eliminate digital certificate management and key escrow issues and can be well embedded in resource-constrained IoT devices for secure access control. Recently, Ma et al. designed an efficient and pair-free certificateless signature (CLS) scheme for IoT deployment. Unfortunately, We demonstrate that the scheme proposed by Ma et al. is susceptible to signature forgery attacks by Type-II adversaries. That is, a malicious-and-passive key generation center (KGC) can forge a legitimate signature for any message by modifying the system parameters without the user’s secret value. Therefore, their identity authentication scheme designed based on vehicular ad-hoc networks also cannot guarantee the claimed security. To address the security vulnerabilities, we designed a blockchain-enhanced and anonymous CLS scheme and proved its security under the Elliptic curve discrete logarithm (ECDL) hardness assumption. Compared to similar schemes, our enhanced scheme offers notable advantages in computational efficiency and communication overhead, as well as stronger security. In addition, a mutual authentication scheme that satisfies the cross-domain scenario is proposed to facilitate efficient mutual authentication and negotiated session key generation between smart devices and edge servers in different edge networks. Performance evaluation shows that our protocol achieves an effective trade-off between security and compute performance, with better applicability in IoT scenarios.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can smartphones serve as an instrument for driver behavior of intelligent transportation systems research? A systematic review: Challenges, motivations, and recommendations 智能手机能否作为智能交通系统研究的驾驶员行为工具?系统综述:挑战、动机和建议
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-09-16 DOI: 10.1016/j.pmcj.2024.101978
{"title":"Can smartphones serve as an instrument for driver behavior of intelligent transportation systems research? A systematic review: Challenges, motivations, and recommendations","authors":"","doi":"10.1016/j.pmcj.2024.101978","DOIUrl":"10.1016/j.pmcj.2024.101978","url":null,"abstract":"<div><div>The increasing number of road accidents is a major issue in many countries. Studying drivers’ behaviour is essential to identify the key factors of these accidents. As improving sustainability can be reached by improving driving behaviour, this study aimed to review and thoroughly analyse current driver behaviour literature that focuses on smartphones and attempted to provide an understanding of various contextual fields in published studies through different open challenges encountered and recommendations to enhance this vital area. All articles about driver behaviour with the scope of using smartphone were searched systematically in four main databases, namely, IEEE Xplore, ScienceDirect, Scopus and Web of Science, from 2013 to 2023. The final set of 207 articles matched our inclusion and exclusion criteria. The basic characteristics of this emerging field are identified from the aspects of motivations, open challenges that impede the technology's utility, authors’ recommendations and substantial analysis of the previous studies are discussed based on five aspects (sample size, developed software, techniques used, smartphone sensor based and, available datasets). A proposed research methodology as new direction is provided to solve the gaps identified in the analysis. As a case study of the proposed methodology, the area of eco-driving behaviour is selected to address the current gaps in this area and assist in advancing it. This systematic review is expected to open opportunities for researchers and encourage them to work on the identified gaps.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep reinforcement learning based mobility management in a MEC-Enabled cellular IoT network 支持 MEC 的蜂窝物联网网络中基于深度强化学习的移动性管理
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-09-13 DOI: 10.1016/j.pmcj.2024.101987
{"title":"Deep reinforcement learning based mobility management in a MEC-Enabled cellular IoT network","authors":"","doi":"10.1016/j.pmcj.2024.101987","DOIUrl":"10.1016/j.pmcj.2024.101987","url":null,"abstract":"<div><div>Mobile Edge Computing (MEC) has paved the way for new Cellular Internet of Things (CIoT) paradigm, where resource constrained CIoT Devices (CDs) can offload tasks to a computing server located at either a Base Station (BS) or an edge node. For CDs moving in high speed, seamless mobility is crucial during the MEC service migration from one base station (BS) to another. In this paper, we investigate the problem of joint power allocation and Handover (HO) management in a MEC network with a Deep Reinforcement Learning (DRL) approach. To handle the hybrid action space (continuous: power allocation and discrete: HO decision), we leverage Parameterized Deep Q-Network (P-DQN) to learn the near-optimal solution. Simulation results illustrate that the proposed algorithm (P-DQN) outperforms the conventional approaches, such as the nearest BS +random power and random BS +random power, in terms of reward, HO cost, and total power consumption. According to simulation results, HO occurs almost in the edge point of two BS, which means the HO is almost perfectly managed. In addition, the total power consumption is around 0.151 watts in P-DQN while it is about 0.75 watts in nearest BS +random power and random BS +random power.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Security protocol for securing notifications about dangerous events in the agglomeration 确保集聚区危险事件通知安全的安全协议
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-09-11 DOI: 10.1016/j.pmcj.2024.101977
{"title":"Security protocol for securing notifications about dangerous events in the agglomeration","authors":"","doi":"10.1016/j.pmcj.2024.101977","DOIUrl":"10.1016/j.pmcj.2024.101977","url":null,"abstract":"<div><p>Our everyday lives cannot function without intelligent devices, which create the so-called Internet of Things networks. Internet of Things devices have various sensors and software to manage the work environment and perform specific tasks without human intervention. Internet of Things networks require appropriate security at various levels of their operation. In this article, we present a new security protocol that protects communication in IoT networks and enables interconnected devices to communicate and exchange information to increase the security of people living in urban agglomerations. The Control Station device evaluates the collected data about events that may threaten the life or health of residents and then notifies the Emergency Notification Center about it. The protocol guarantees the security of devices and transmitted data. We verified this using automatic verification technology, formal verification using Burrows, Abadi and Needham logic and informal analysis. The proposed protocol ensures mutual authentication, anonymity and revocation. Also, it is resistant to Man-in-the-middle, modification, replay and impersonation attacks. Compared to other protocols, our solution uses simple cryptographic techniques that are lightweight, stable and do not cause problems related to high communication costs. It does not require specialist equipment, so we can implement it using typical hardware. At each stage of protocol execution, communication occurs between two entities, so it does not require interaction between different entities, which may limit its adaptability in the context of interoperability.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574119224001020/pdfft?md5=3cef85ebf780a1e504204af1828772d5&pid=1-s2.0-S1574119224001020-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy-aware human activity recognition for wearable devices: A comprehensive review 可穿戴设备的能量感知人类活动识别:综合评述
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-09-02 DOI: 10.1016/j.pmcj.2024.101976
{"title":"Energy-aware human activity recognition for wearable devices: A comprehensive review","authors":"","doi":"10.1016/j.pmcj.2024.101976","DOIUrl":"10.1016/j.pmcj.2024.101976","url":null,"abstract":"<div><p>With the rapid advancement of wearable devices, sensor-based human activity recognition has emerged as a fundamental research area with broad applications in various domains. While significant progress has been made in this research field, energy consumption remains a critical aspect that deserves special attention. Recognizing human activities while optimizing energy consumption is essential for prolonging device battery life, reducing charging frequency, and ensuring uninterrupted monitoring and functionality.</p><p>The primary objective of this survey paper is to provide a comprehensive review of energy-aware wearable human activity recognition techniques based on wearable sensors without considering vision-based systems. In particular, it aims to explore the state-of-the-art approaches and methodologies that integrate activity recognition with energy management strategies. Finally, by surveying the existing literature, this paper aims to shed light on the challenges, opportunities and potential solutions for energy-aware human activity recognition.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574119224001019/pdfft?md5=3a75aef0c582dd105ddf3b32830e2e31&pid=1-s2.0-S1574119224001019-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating the neural network controller embedded implementation on FPGA with novel dropout techniques for a solar inverter 利用新型剔除技术加速太阳能逆变器神经网络控制器在 FPGA 上的嵌入式实现
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-08-17 DOI: 10.1016/j.pmcj.2024.101975
{"title":"Accelerating the neural network controller embedded implementation on FPGA with novel dropout techniques for a solar inverter","authors":"","doi":"10.1016/j.pmcj.2024.101975","DOIUrl":"10.1016/j.pmcj.2024.101975","url":null,"abstract":"<div><p>Accelerating neural network (NN) controllers is important for improving the performance, efficiency, scalability, and reliability of real-time systems, particularly in resource-constrained embedded systems. This paper introduces a novel weight-dropout method for training neural network controllers in real-time closed-loop systems, aimed at accelerating the embedded implementation for solar inverters. The core idea is to eliminate small-magnitude weights during training, thereby reducing the number of necessary connections while ensuring the network’s convergence. To maintain convergence, only non-diagonal elements of the weight matrices were dropped. This dropout technique was integrated into the Levenberg–Marquardt and Forward Accumulation Through Time algorithms, resulting in more efficient training for trajectory tracking. We executed the proposed training algorithm with dropout on the AWS cloud, observing a performance increase of approximately four times compared to local execution. Furthermore, implementing the neural network controller on the Intel Cyclone V Field Programmable Gate Array (FPGA) demonstrates significant improvements in computational and resource efficiency due to the proposed dropout technique leading to sparse weight matrices. This optimization enhances the suitability of the neural network controller for embedded environments. In comparison to Sturtz et al. (2023), which dropped 11 weights, our approach eliminated 18 weights, significantly boosting resource efficiency. This resulted in a 16.40% reduction in Adaptive Logic Modules (ALMs), decreasing the count to 47,426.5. Combinational Look-Up Tables (LUTs) and dedicated logic registers saw reductions of 17.80% and 15.55%, respectively. However, the impact on block memory bits is minimal, showing only a 1% improvement, indicating that memory resources are less affected by weight dropout. In contrast, the usage of Memory 10 Kilobits (MK10s) dropped from 97 to 87, marking a 10% improvement. We also propose an adaptive dropout technique to further improve the previous results.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Edge human activity recognition using federated learning on constrained devices 在受限设备上利用联合学习进行边缘人类活动识别
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2024-08-08 DOI: 10.1016/j.pmcj.2024.101972
{"title":"Edge human activity recognition using federated learning on constrained devices","authors":"","doi":"10.1016/j.pmcj.2024.101972","DOIUrl":"10.1016/j.pmcj.2024.101972","url":null,"abstract":"<div><p>Human Activity Recognition (HAR) using wearable Internet of Things (IoT) devices represents a well investigated researched field encompassing various application domains. Many current approaches rely on cloud-based methodologies for gathering data from diverse users, resulting in the creation of extensive training datasets. Although this strategy facilitates the application of powerful Machine Learning (ML) techniques, it raises significant privacy concerns, which can become particularly severe given the sensitivity of HAR data. Moreover, the labeling process can be extremely time-consuming and even more challenging for IoT wearable devices due to the absence of efficient input systems. In this paper, we address both aforementioned challenges by designing, implementing, and validating edge-based Human Activity Recognition (HAR) systems that operate on resource-constrained IoT devices, which relies on the utilization of Self-Organizing Maps (SOM) for activity detection. We incorporate a feature selection process before training to reduce data dimensionality and, consequently, the SOM size, aligning with the resource limitations of wearable IoT devices. Additionally, we explore the application of Federated Learning (FL) techniques for HAR tasks, enabling new users to leverage SOM models trained by others on their respective datasets. Our federated Extreme Edge (EE)-aware HAR system is implemented on a wearable IoT device and rigorously tested against state-of-the-art and experimental datasets. The results demonstrate that our C++-based SOM implementation achieves a consistent reduction in model size compared to state-of-the-art approaches. Furthermore, our findings highlight the effectiveness of the FL-based approach in overcoming personalized training challenges, particularly in onboarding scenarios.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S157411922400097X/pdfft?md5=00c8c39b201e7dc11581a2c5474e3422&pid=1-s2.0-S157411922400097X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信