Pervasive and Mobile Computing最新文献

筛选
英文 中文
Efficiently linking LoRaWAN identifiers through multi-domain fingerprinting 通过多域指纹识别高效链接LoRaWAN标识符
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2025-06-16 DOI: 10.1016/j.pmcj.2025.102082
Samuel Pélissier , Abhishek Kumar Mishra , Mathieu Cunche , Vincent Roca , Didier Donsez
{"title":"Efficiently linking LoRaWAN identifiers through multi-domain fingerprinting","authors":"Samuel Pélissier ,&nbsp;Abhishek Kumar Mishra ,&nbsp;Mathieu Cunche ,&nbsp;Vincent Roca ,&nbsp;Didier Donsez","doi":"10.1016/j.pmcj.2025.102082","DOIUrl":"10.1016/j.pmcj.2025.102082","url":null,"abstract":"<div><div>LoRaWAN is a leading IoT technology worldwide, increasingly integrated into pervasive computing environments through a growing number of sensors in various industrial and consumer applications. Although its security vulnerabilities have been extensively explored in the recent literature, its ties to human activities warrant further privacy research. Existing device identification and activity inference attacks are only effective with a stable identifier. We find that the identifiers in LoRaWAN exhibit high variability, and more than half of the devices use them for less than a week. For the first time in the literature, we explore the feasibility of device fingerprinting in LoRaWAN, allowing long-term device linkage, i.e. associating various identifiers of the same device. We introduce a novel holistic fingerprint representation utilizing multiple domains, namely content, timing, and radio information, and present a machine learning-based solution for linking identifiers. Through a large-scale experimental evaluation based on real-world datasets containing up to 41 million messages, we study multiple scenarios, including an attacker with limited resources. We reach 0.98 linkage accuracy, underscoring the need for privacy-preserving measures. We showcase countermeasures including payload padding, random delays, and radio signal modulation, and conclude by assessing their impact on our fingerprinting solution.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"112 ","pages":"Article 102082"},"PeriodicalIF":3.0,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144313756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital twin-enabled age of information-aware scheduling for Industrial IoT edge networks 工业物联网边缘网络的信息感知调度数字孪生时代
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2025-06-16 DOI: 10.1016/j.pmcj.2025.102083
Elif Bozkaya-Aras
{"title":"Digital twin-enabled age of information-aware scheduling for Industrial IoT edge networks","authors":"Elif Bozkaya-Aras","doi":"10.1016/j.pmcj.2025.102083","DOIUrl":"10.1016/j.pmcj.2025.102083","url":null,"abstract":"<div><div>Mobile Edge Computing (MEC) is a significant technology employed in the development of the Industrial Internet of Things (IIoT) as it allows the collection and processing of high volumes of data at the network edge to support industrial processes and improve operational efficiency and productivity. However, despite significant advances in MEC capabilities, the stringent latency requirement that may occur in computation-intensive tasks may affect the freshness of status information. Therefore, there are practical challenges in scheduling the tasks associated with computational efficiency in local computation and remote computation. In this context, we propose an Age of Information (AoI)-based scheduler to determine where to execute computational tasks in order to continuously track state data updates, where the AoI metric measures the time elapsed from the generation of the computation task at the source to the latest received update at the destination. The contributions of this paper are threefold: First, we propose a digital twin-enabled AoI-based scheduler model that collects real-time data from IIoT nodes and predicts the best task assignment in terms of local computation and remote computation. The digital twin environment allows monitoring of the state changes of the real physical assets over time and optimizes the scheduling strategy. Second, we formulate the average AoI problem with the M/M/1 queueing model and propose a genetic algorithm-based scheduler to minimize AoI and task completion time to efficiently schedule the computation tasks between IIoT devices and MEC servers. Third, we compare the performance of our digital twin-enabled model with the traditional strategies and make a significant contribution to IIoT edge network management by analyzing AoI, task completion time and MEC server utilization.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"112 ","pages":"Article 102083"},"PeriodicalIF":3.0,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144313757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An optimized Multi Agent Reinforcement Learning solution for edge caching in the Internet of Vehicles 一种针对车联网边缘缓存的优化多智能体强化学习解决方案
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2025-06-13 DOI: 10.1016/j.pmcj.2025.102081
Mohamed Amine Ghamri, Badis Djamaa, Mohamed Akrem Benatia, Redouane Bellahmer
{"title":"An optimized Multi Agent Reinforcement Learning solution for edge caching in the Internet of Vehicles","authors":"Mohamed Amine Ghamri,&nbsp;Badis Djamaa,&nbsp;Mohamed Akrem Benatia,&nbsp;Redouane Bellahmer","doi":"10.1016/j.pmcj.2025.102081","DOIUrl":"10.1016/j.pmcj.2025.102081","url":null,"abstract":"<div><div>The Internet of Vehicles has evolved significantly with the integration of intelligent technologies, transforming vehicular networks by enhancing communication, resource management, and decision-making at the network’s edge. With the increasing complexity of vehicular environments and data demands, efficient caching mechanisms have become essential to ensure seamless service delivery and optimized resource usage. In this paper, we present LF-MARLEC, a Leader Follower Multi-Agent Reinforcement Learning solution for Edge Caching within the Internet of Vehicles. Our approach introduces a hierarchical distribution of action importance, enabling more effective decision-making at the network edge. Extensive experiments, conducted using widely adopted simulation tools such as SUMO and Veins, demonstrate that our approach substantially enhances caching performance and overall system efficiency. Specifically, our approach achieves nearly 9% reduction in content distribution delay and over 11% improvement in cache hit rate compared to state-of-the-art methods, thereby enhancing the effectiveness of intelligent edge caching in Internet of Vehicles environments. The source code is publicly available at: <span><span>https://github.com/amine9008/RL-EDGE-CACHING</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"112 ","pages":"Article 102081"},"PeriodicalIF":3.0,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144364550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lightweight secure key establishment to create a secure channel between entities in a crowdsourcing environment 轻量级安全密钥建立,在众包环境中创建实体之间的安全通道
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2025-06-09 DOI: 10.1016/j.pmcj.2025.102078
Mahdi Nikooghadam, Hamid Reza Shahriari
{"title":"Lightweight secure key establishment to create a secure channel between entities in a crowdsourcing environment","authors":"Mahdi Nikooghadam,&nbsp;Hamid Reza Shahriari","doi":"10.1016/j.pmcj.2025.102078","DOIUrl":"10.1016/j.pmcj.2025.102078","url":null,"abstract":"<div><div>The concept of crowdsourcing uses shared intelligence to solve complex tasks through group collaboration. Crowdsourcing involves gathering information and opinions from participants who submit their data, or solutions, over the Internet using a specific program. Given that the communication environment for crowdsourcing platforms is the Internet, there is a significant opportunity for attackers to compromise the confidentiality and integrity of information and violate participants’ privacy. Despite the great benefits of crowdsourcing, concerns about security and privacy are growing and require attention. Unfortunately based on our knowledge, the schemes presented to preserve security and privacy in crowdsourcing are susceptible to security and privacy attack and have a high computational and communication overhead. Therefore, they are not appropriate for crowdsourcing environments. This paper presents an ultra-lightweight authentication and key establishment protocol based on hash functions. This protocol meets all security requirements, is invulnerable to known attacks, and imposes a very low network overhead. The security of the proposed scheme has been formally proved, depicting the resistance of the proposed scheme to different types of possible attacks. In addition, the robustness of the proposed scheme against potential attacks has been proven through Scyther’s automatic software validation tool. The performance evaluation ultimately demonstrated that the proposed protocol incurs significantly reduced computational and communication costs compared to previous schemes and is very suitable for the crowdsourcing environment.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"112 ","pages":"Article 102078"},"PeriodicalIF":3.0,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144262812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling user dynamics in the evolving social debate on climate crisis during the conferences of the parties 在缔约方会议期间,在不断发展的气候危机社会辩论中揭示用户动态
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2025-06-05 DOI: 10.1016/j.pmcj.2025.102077
Liliana Martirano , Lucio La Cava , Andrea Tagarelli
{"title":"Unveiling user dynamics in the evolving social debate on climate crisis during the conferences of the parties","authors":"Liliana Martirano ,&nbsp;Lucio La Cava ,&nbsp;Andrea Tagarelli","doi":"10.1016/j.pmcj.2025.102077","DOIUrl":"10.1016/j.pmcj.2025.102077","url":null,"abstract":"<div><div>Social media have widely been recognized as a valuable proxy for investigating users’ opinions by echoing virtual venues where individuals engage in daily discussions on a wide range of topics. Among them, climate change is gaining momentum due to its large-scale impact, tangible consequences for society, and enduring nature. In this work, we investigate the social debate surrounding climate emergency, aiming to uncover the fundamental patterns that underlie the climate debate, thus providing valuable support for strategic and operational decision-making. To this purpose, we leverage Graph Mining and NLP techniques to analyze a large corpus of tweets spanning seven years pertaining to the Conference of the Parties (COP), the leading global forum for multilateral discussion on climate-related matters, based on our proposed framework, named NATMAC, which consists of three main modules designed to perform network analysis, topic modeling and affective computing tasks. Our contribution in this work is manifold: (i) we provide insights into the key social actors involved in the climate debate and their relationships, (ii) we unveil the main topics discussed during COPs within the social landscape, (iii) we assess the evolution of users’ sentiment and emotions across time, and (iv) we identify users’ communities based on multiple dimensions. Furthermore, our proposed approach exhibits the potential to scale up to other emergency issues, highlighting its versatility and potential for broader use in analyzing and understanding the increasingly debated emergent phenomena.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"112 ","pages":"Article 102077"},"PeriodicalIF":3.0,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144364551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A-BEE-C: Autonomous Bandwidth-Efficient Edge Codecast A-BEE-C:自主带宽高效边缘编解码器
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2025-06-04 DOI: 10.1016/j.pmcj.2025.102075
Gyujeong Lim , Joon-Min Gil , Heonchang Yu
{"title":"A-BEE-C: Autonomous Bandwidth-Efficient Edge Codecast","authors":"Gyujeong Lim ,&nbsp;Joon-Min Gil ,&nbsp;Heonchang Yu","doi":"10.1016/j.pmcj.2025.102075","DOIUrl":"10.1016/j.pmcj.2025.102075","url":null,"abstract":"<div><div>Edge computing is a new paradigm in cloud infrastructure that decentralizes computing and storage, bringing data and services closer to the users. This proximity allows users to access high quality or large sized data with lower latency. However, edge servers typically have fewer resources than cloud servers, necessitating efficient resource management. Emerging research focuses on increasing the cache hit rate of user requests to edge servers, which reduces response latency and improves efficiency. Nonetheless, if available bandwidth is not considered, it becomes challenging to maintain both speed and quality in edge environments. This paper proposes an Autonomous Bandwidth-Efficient Edge Codecast (A-BEE-C) method to enhance the effective bandwidth per device within an edge service area. Codecast, introduced in this paper, is a transmission method that encodes multiple files into a single file before sending it to users. A-BEE-C introduces a dynamic mechanism that switches between unicast and codecast modes based on real-time bandwidth assessment. Our proposed method increases the effective bandwidth per device by encoding multiple user requests into a single coded transmission when the bandwidth of the edge server is limited. Experimental results demonstrate that A-BEE-C reduces average latency per device by up to 9.89% (and up to 18.45% with Zipf pattern data) and increases effective bandwidth per user by up to 10.15% (up to 18.11% with Zipf pattern).</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"112 ","pages":"Article 102075"},"PeriodicalIF":3.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144221106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A customizable benchmarking tool for evaluating personalized thermal comfort provisioning in smart spaces using Digital Twins 一个可定制的基准工具,用于使用Digital Twins评估智能空间的个性化热舒适配置
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2025-06-04 DOI: 10.1016/j.pmcj.2025.102076
Jun Ma , Dimitrije Panic , Roberto Yus , Georgios Bouloukakis
{"title":"A customizable benchmarking tool for evaluating personalized thermal comfort provisioning in smart spaces using Digital Twins","authors":"Jun Ma ,&nbsp;Dimitrije Panic ,&nbsp;Roberto Yus ,&nbsp;Georgios Bouloukakis","doi":"10.1016/j.pmcj.2025.102076","DOIUrl":"10.1016/j.pmcj.2025.102076","url":null,"abstract":"<div><div>Providing proper thermal comfort to individual occupants is crucial to improve well-being and work efficiency. However, Heating, Ventilation, and Air Conditioning (HVAC) systems are responsible for a large portion of energy consumption and CO2 emissions in buildings. To combat the current energy crisis and climate change, innovative ways have been proposed to leverage pervasive and mobile computing systems equipped with sensors and smart devices for occupant thermal comfort satisfaction and efficient HVAC management. However, evaluating these thermal comfort provision solutions presents considerable difficulties. Conducting experiments in the real world poses challenges such as privacy concerns and the high costs of installing and maintaining sensor infrastructure. On the other hand, experiments with simulations need to accurately model real-world conditions and ensure the reliability of the simulated data.</div><div>To address these challenges, we present Co-zyBench, an innovative benchmarking tool that leverages Digital Twin (DT) technology to assess personalized thermal comfort provision systems. Our benchmark employs a simulation-based DT for the building and its HVAC system, another DT for simulating the dynamic behavior of its occupants, and a co-simulation middleware to achieve a seamless connection of the DTs. Our benchmark includes mechanisms to generate DTs based on data such as architectural models of buildings, sensor readings, and occupant thermal sensation data. It also includes reference DTs based on standard buildings, HVAC configurations, and various occupant thermal profiles. As a result of the evaluation, the benchmark generates a report based on expected energy consumption, carbon emission, thermal comfort, and occupant equity metrics. We present the evaluation results of state-of-the-art thermal comfort provisioning systems within a DT based on a real building and several reference DTs.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"112 ","pages":"Article 102076"},"PeriodicalIF":3.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144241928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resilient UAVs location sharing service based on information freshness and opportunistic deliveries 基于信息新鲜度和机会交付的弹性无人机位置共享服务
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2025-06-01 DOI: 10.1016/j.pmcj.2025.102066
Agnaldo de Souza Batista , Aldri Luiz dos Santos
{"title":"Resilient UAVs location sharing service based on information freshness and opportunistic deliveries","authors":"Agnaldo de Souza Batista ,&nbsp;Aldri Luiz dos Santos","doi":"10.1016/j.pmcj.2025.102066","DOIUrl":"10.1016/j.pmcj.2025.102066","url":null,"abstract":"<div><div>Unmanned aerial vehicles (UAV) have been recognized as a versatile platform for various services. During the flight, these vehicles must avoid collisions to operate safely. In this way, they demand to keep spatial awareness, i.e., to know others in their coverage area. However, mobility and positioning hamper building UAV network infrastructure to support reliable basic services. Thus, such vehicles call for a location service with up-to-date information resilient to false location injection threats. This work proposes FlySafe, a resilient UAV location-sharing service that employs opportunistic approaches to deliver UAVs’ location. FlySafe takes into account the freshness of UAVs’ location to maintain their spatial awareness. Further, it counts on the age of the UAV’s location information to trigger device discovery. Simulation results showed that FlySafe achieved spatial awareness up to 94.15% of UAV operations, being resilient to false locations injected in the network. Moreover, the accuracy in device discovery achieved 94.53% with a location error of less than 2 m.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"111 ","pages":"Article 102066"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144184361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Task offloading of IOT device in fog-enabled architecture using deep reinforcement learning approach 使用深度强化学习方法在雾支持架构中卸载物联网设备的任务
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2025-05-31 DOI: 10.1016/j.pmcj.2025.102067
Abhinav Tomar, Megha Sharma, Ashwarya Agarwal, Aditya Nath Jha, Jai Jaiswal
{"title":"Task offloading of IOT device in fog-enabled architecture using deep reinforcement learning approach","authors":"Abhinav Tomar,&nbsp;Megha Sharma,&nbsp;Ashwarya Agarwal,&nbsp;Aditya Nath Jha,&nbsp;Jai Jaiswal","doi":"10.1016/j.pmcj.2025.102067","DOIUrl":"10.1016/j.pmcj.2025.102067","url":null,"abstract":"<div><div>The rapid growth of IoT devices has strained traditional cloud-centric architectures, revealing limitations in latency, bandwidth, and reliability. Fog computing addresses these issues by decentralizing resources closer to data sources, but task offloading and resource allocation remain challenging due to dynamic workloads, heterogeneous resources, and strict QoS requirements. This study models task offloading as a multi-objective optimization problem, considering task priority, energy efficiency, latency, and deadlines. Using a Markov Decision Process (MDP), it applies three Deep Reinforcement Learning (DRL) algorithms — DQN, DDPG, and SAC — in a multi-agent fog computing setup. Unlike prior work focused on single-agent or isolated metrics, this approach captures inter-node dependencies to improve overall resource use. Simulations show SAC achieves a 97.3% task deadline success rate and improves resource efficiency by 10.1%, highlighting its effectiveness in managing dynamic fog environments. These results advance scalable, adaptive offloading strategies for future IoT systems.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"112 ","pages":"Article 102067"},"PeriodicalIF":3.0,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144194944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid elk herd green anaconda-based multipath routing and deep learning-based intrusion detection In MANET 基于混合麋鹿群绿水蟒的多路径路由和基于深度学习的MANET入侵检测
IF 3 3区 计算机科学
Pervasive and Mobile Computing Pub Date : 2025-05-23 DOI: 10.1016/j.pmcj.2025.102079
Dr M. Anugraha , Dr S. Selvin Ebenezer , Dr S. Maheswari
{"title":"Hybrid elk herd green anaconda-based multipath routing and deep learning-based intrusion detection In MANET","authors":"Dr M. Anugraha ,&nbsp;Dr S. Selvin Ebenezer ,&nbsp;Dr S. Maheswari","doi":"10.1016/j.pmcj.2025.102079","DOIUrl":"10.1016/j.pmcj.2025.102079","url":null,"abstract":"<div><div>A Mobile Ad-Hoc Network (MANET) represents a set of wireless networks that create the network without requiring centralized control. Moreover, the MANET serves as an effectual communication network but is impacted by security issues. MANET intrusion detection constantly monitors network traffic for potential intrusions. Still, it requires network nodes for analyzing, and processing the data, which leads to the highest processing charge. For solving such difficulties, the EIK Herd Anaconda Optimization (EHAO)-based routing, and EHAO-trained Deep Kronecker Network (EHAO-DKN) for intrusion detection is devised in this paper. The MANET simulation is the prime step for attaining the routing. The proposed EHGAO with the fitness factors are considered in the routing. The intrusion presence in the MANET is detected at the Base Station (BS), where the Z-score normalization is applied to normalize the log data. The Wave Hedges metric effectively selects the relevant features, and the EHAO-DKN detects the intrusion. Furthermore, the EHAO-based routing obtained the optimal trust, energy, and delay of 85.30, 2.905 J, and 0.608 mS as well as the accuracy, sensitivity, and specificity of 92.40 %, 91.50 %, and 91.50 % are achieved by the EHAO-DKN-based intrusion detection.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"112 ","pages":"Article 102079"},"PeriodicalIF":3.0,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144241479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信