{"title":"On-device indoor place prediction using WiFi-RTT and inertial sensors","authors":"Pritam Sen , Xiaopeng Jiang , Qiong Wu , Manoop Talasila , Wen-Ling Hsu , Cristian Borcea","doi":"10.1016/j.pmcj.2025.102118","DOIUrl":null,"url":null,"abstract":"<div><div>High-accuracy and low-latency indoor place prediction for mobile users can enable a wide range of applications for domains such as assisted living and smart homes. In this paper, we propose GoPlaces, a practical indoor place prediction system that works on mobile devices without requiring any new infrastructure. GoPlaces does not rely on servers or specialized localization infrastructure, except for a single cheap off-the-shelf WiFi access point that supports ranging with Round Trip Time (RTT) protocol. GoPlaces enables personalized place naming and prediction, and it protects users’ location privacy. It fuses inertial sensor data with distances estimated using the WiFi-RTT protocol to predict the indoor places a user will visit. GoPlaces employs an attention-based BiLSTM model to detect user’s current trajectory, which is then used together with historical information stored in a prediction tree to infer user’s future places. We implemented GoPlaces in Android and evaluated it in several indoor spaces. The experimental results demonstrate prediction accuracy as high as 86%. Furthermore, they show GoPlaces is feasible in real life because it has low latency and low resource consumption on the phones.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"114 ","pages":"Article 102118"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119225001075","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
High-accuracy and low-latency indoor place prediction for mobile users can enable a wide range of applications for domains such as assisted living and smart homes. In this paper, we propose GoPlaces, a practical indoor place prediction system that works on mobile devices without requiring any new infrastructure. GoPlaces does not rely on servers or specialized localization infrastructure, except for a single cheap off-the-shelf WiFi access point that supports ranging with Round Trip Time (RTT) protocol. GoPlaces enables personalized place naming and prediction, and it protects users’ location privacy. It fuses inertial sensor data with distances estimated using the WiFi-RTT protocol to predict the indoor places a user will visit. GoPlaces employs an attention-based BiLSTM model to detect user’s current trajectory, which is then used together with historical information stored in a prediction tree to infer user’s future places. We implemented GoPlaces in Android and evaluated it in several indoor spaces. The experimental results demonstrate prediction accuracy as high as 86%. Furthermore, they show GoPlaces is feasible in real life because it has low latency and low resource consumption on the phones.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.