Bhabani Sankar Gouda , Trilochan Panigrahi , Sudhakar Das , Meenakshi Panda , Linga Reddy Cenkeramaddi
{"title":"Distributed fault detection in sparse wireless sensor networks utilizing simultaneous likelihood ratio statistics","authors":"Bhabani Sankar Gouda , Trilochan Panigrahi , Sudhakar Das , Meenakshi Panda , Linga Reddy Cenkeramaddi","doi":"10.1016/j.pmcj.2025.102043","DOIUrl":null,"url":null,"abstract":"<div><div>Sensor nodes in wireless sensor networks (WSNs) for several remote applications are deployed in harsh environments and are coupled with low-cost components. Because of these factors, sensor nodes are becoming faulty, resulting in serious data inaccuracy in the network if not diagnosed in a timely manner. The current approaches to centralized or distributed fault detection algorithms are based on statistical methods or machine learning algorithms. Statistical methods require more data to achieve the desired detection accuracy and may be impractical for sparse networks. Machine learning approaches are computationally demanding. We know that the mean and variance of data from a faulty node differ from those from a healthy node. As a result, simultaneous likelihood ratio statistics are proposed here to determine the sensor node’s fault status in WSNs. The proposed hybrid method, in which the faulty status of the node connected to the anchor node is diagnosed by the anchor node, assumes that the anchor node has statistics for all connected nodes. During the diagnosis time, the simultaneous likelihood ratio statistics (SLRS) are computed using the data received by the anchor node over a specific time period. The fault status is determined by comparing the likelihood ratio to a predetermined threshold based on the tolerance limit. The algorithm’s performance is determined and compared to state-of-the-art algorithms using real-time measured data from the literature.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"110 ","pages":"Article 102043"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157411922500032X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Sensor nodes in wireless sensor networks (WSNs) for several remote applications are deployed in harsh environments and are coupled with low-cost components. Because of these factors, sensor nodes are becoming faulty, resulting in serious data inaccuracy in the network if not diagnosed in a timely manner. The current approaches to centralized or distributed fault detection algorithms are based on statistical methods or machine learning algorithms. Statistical methods require more data to achieve the desired detection accuracy and may be impractical for sparse networks. Machine learning approaches are computationally demanding. We know that the mean and variance of data from a faulty node differ from those from a healthy node. As a result, simultaneous likelihood ratio statistics are proposed here to determine the sensor node’s fault status in WSNs. The proposed hybrid method, in which the faulty status of the node connected to the anchor node is diagnosed by the anchor node, assumes that the anchor node has statistics for all connected nodes. During the diagnosis time, the simultaneous likelihood ratio statistics (SLRS) are computed using the data received by the anchor node over a specific time period. The fault status is determined by comparing the likelihood ratio to a predetermined threshold based on the tolerance limit. The algorithm’s performance is determined and compared to state-of-the-art algorithms using real-time measured data from the literature.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.