Tongzhijun Zhu , Ying Lin , Yanzhen Qu , Zediao Liu , Yayu Luo , Tenglong Mao , Ziyi Chen
{"title":"具有经验见解的联合学习:利用梯度历史经验来实现性能公平性","authors":"Tongzhijun Zhu , Ying Lin , Yanzhen Qu , Zediao Liu , Yayu Luo , Tenglong Mao , Ziyi Chen","doi":"10.1016/j.pmcj.2025.102061","DOIUrl":null,"url":null,"abstract":"<div><div>Performance fairness has always been a key issue in federated learning (FL), however, the pursuit of performance consistency can lead to a trade-off where the accuracy of well-performing clients is compromised to enhance the accuracy of poor-performing clients. To ensure equitable treatment and unbiased outcomes for all participants in the FL process, we propose FedMH, a fair and fast multi-gradient descent federated learning algorithm with reinforced gradient historical empirical information. We have conducted a theoretical analysis of FedMH from the perspectives of fairness and convergence. Extensive experiments are performed on four federated datasets, revealing significant improvements achieved by FedMH compared to state-of-the-art baselines. Moreover, the experimental findings highlight FedMH’s superior performance in fine-grained classification problems when compared to existing advanced baselines. In brief, the proper utilization of gradient historical empirical information helps improve the effectiveness and fairness of FL, making it more suitable for large-scale and heterogeneous distributed environments.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"110 ","pages":"Article 102061"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated learning with empirical insights: Leveraging gradient historical experiences for performance fairness\",\"authors\":\"Tongzhijun Zhu , Ying Lin , Yanzhen Qu , Zediao Liu , Yayu Luo , Tenglong Mao , Ziyi Chen\",\"doi\":\"10.1016/j.pmcj.2025.102061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Performance fairness has always been a key issue in federated learning (FL), however, the pursuit of performance consistency can lead to a trade-off where the accuracy of well-performing clients is compromised to enhance the accuracy of poor-performing clients. To ensure equitable treatment and unbiased outcomes for all participants in the FL process, we propose FedMH, a fair and fast multi-gradient descent federated learning algorithm with reinforced gradient historical empirical information. We have conducted a theoretical analysis of FedMH from the perspectives of fairness and convergence. Extensive experiments are performed on four federated datasets, revealing significant improvements achieved by FedMH compared to state-of-the-art baselines. Moreover, the experimental findings highlight FedMH’s superior performance in fine-grained classification problems when compared to existing advanced baselines. In brief, the proper utilization of gradient historical empirical information helps improve the effectiveness and fairness of FL, making it more suitable for large-scale and heterogeneous distributed environments.</div></div>\",\"PeriodicalId\":49005,\"journal\":{\"name\":\"Pervasive and Mobile Computing\",\"volume\":\"110 \",\"pages\":\"Article 102061\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pervasive and Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574119225000501\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119225000501","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Federated learning with empirical insights: Leveraging gradient historical experiences for performance fairness
Performance fairness has always been a key issue in federated learning (FL), however, the pursuit of performance consistency can lead to a trade-off where the accuracy of well-performing clients is compromised to enhance the accuracy of poor-performing clients. To ensure equitable treatment and unbiased outcomes for all participants in the FL process, we propose FedMH, a fair and fast multi-gradient descent federated learning algorithm with reinforced gradient historical empirical information. We have conducted a theoretical analysis of FedMH from the perspectives of fairness and convergence. Extensive experiments are performed on four federated datasets, revealing significant improvements achieved by FedMH compared to state-of-the-art baselines. Moreover, the experimental findings highlight FedMH’s superior performance in fine-grained classification problems when compared to existing advanced baselines. In brief, the proper utilization of gradient historical empirical information helps improve the effectiveness and fairness of FL, making it more suitable for large-scale and heterogeneous distributed environments.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.