Journal of Nonlinear Mathematical Physics最新文献

筛选
英文 中文
On the Existence and Uniqueness of the Solution of a Nonlinear Fractional Differential Equation with Integral Boundary Condition 一类具有积分边界条件的非线性分数阶微分方程解的存在唯一性
4区 物理与天体物理
Journal of Nonlinear Mathematical Physics Pub Date : 2023-09-27 DOI: 10.1007/s44198-023-00143-3
Elyas Shivanian
{"title":"On the Existence and Uniqueness of the Solution of a Nonlinear Fractional Differential Equation with Integral Boundary Condition","authors":"Elyas Shivanian","doi":"10.1007/s44198-023-00143-3","DOIUrl":"https://doi.org/10.1007/s44198-023-00143-3","url":null,"abstract":"Abstract This study focuses on investigating the existence and uniqueness of a solution to a specific type of high-order nonlinear fractional differential equations that include the Rieman-Liouville fractional derivative. The boundary condition is of integral type, which involves both the starting and ending points of the domain. Initially, the unique exact solution is derived using Green’s function for the linear fractional differential equation. Subsequently, the Banach contraction mapping theorem is employed to establish the main result for the general nonlinear source term case. Moreover, an illustrative example is presented to demonstrate the legitimacy and applicability of our main result.","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"101 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135536532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Monotonicity of Limit Wave Speed of the pgKdV Equation with Nonlinear Terms of Arbitrary Higher Degree 任意高次非线性pgKdV方程极限波速的单调性
4区 物理与天体物理
Journal of Nonlinear Mathematical Physics Pub Date : 2023-09-27 DOI: 10.1007/s44198-023-00141-5
Zhenshu Wen
{"title":"On the Monotonicity of Limit Wave Speed of the pgKdV Equation with Nonlinear Terms of Arbitrary Higher Degree","authors":"Zhenshu Wen","doi":"10.1007/s44198-023-00141-5","DOIUrl":"https://doi.org/10.1007/s44198-023-00141-5","url":null,"abstract":"Abstract We prove that limit wave speed is decreasing for the pgKdV equation with nonlinear terms of arbitrary higher degree in a numerical way. Our results provide the complete answer to the open question suggested by Yan et al. (Math Model Anal 19:537–555, 2014).","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135537088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some Soliton Hierarchies Associated with Lie Algebras $$mathfrak {sp}(4)$$ and $$mathfrak {so}(5)$$ 与李代数相关的一些孤子层次$$mathfrak {sp}(4)$$及 $$mathfrak {so}(5)$$
4区 物理与天体物理
Journal of Nonlinear Mathematical Physics Pub Date : 2023-09-26 DOI: 10.1007/s44198-023-00140-6
Baiying He, Shiyuan Liu, Siyu Gao
{"title":"Some Soliton Hierarchies Associated with Lie Algebras $$mathfrak {sp}(4)$$ and $$mathfrak {so}(5)$$","authors":"Baiying He, Shiyuan Liu, Siyu Gao","doi":"10.1007/s44198-023-00140-6","DOIUrl":"https://doi.org/10.1007/s44198-023-00140-6","url":null,"abstract":"Abstract Based on the symplectic Lie algebra $$mathfrak {sp}(4)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>sp</mml:mi> <mml:mo>(</mml:mo> <mml:mn>4</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , we obtain two integrable hierarchies of $$mathfrak {sp}(4)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>sp</mml:mi> <mml:mo>(</mml:mo> <mml:mn>4</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , and by using the trace identity, we give their Hamiltonian structures. Then, we use $$2times 2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>×</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> Kronecker product, and construct integrable coupling systems of one soliton equation. Next, we consider two bases of Lie algebra $$mathfrak {so}(5)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>so</mml:mi> <mml:mo>(</mml:mo> <mml:mn>5</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , and we get the corresponding two integrable hierarchies. Finally, we discuss the relation between the integrable hierarchies of two different bases associated with Lie algebra $$mathfrak {so}(5)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>so</mml:mi> <mml:mo>(</mml:mo> <mml:mn>5</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> .","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134961124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Meromorphic Solutions of Non-linear Differential-Difference Equations 非线性微分-差分方程的亚纯解
4区 物理与天体物理
Journal of Nonlinear Mathematical Physics Pub Date : 2023-09-26 DOI: 10.1007/s44198-023-00136-2
MingXin Zhao, Zhigang Huang
{"title":"On Meromorphic Solutions of Non-linear Differential-Difference Equations","authors":"MingXin Zhao, Zhigang Huang","doi":"10.1007/s44198-023-00136-2","DOIUrl":"https://doi.org/10.1007/s44198-023-00136-2","url":null,"abstract":"Abstract In this paper, we investigate the non-existence of transcendental entire solutions for non-linear differential-difference equations of the forms $$begin{aligned} f^{n}(z)+Q(z,f)=beta _{1}e^{alpha _{1}z}+beta _{2}e^{alpha _{2}z}+cdots +beta _{s}e^{alpha _{s}z} end{aligned}$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mtable&gt; &lt;mml:mtr&gt; &lt;mml:mtd&gt; &lt;mml:mrow&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:mi&gt;Q&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;β&lt;/mml:mi&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:msub&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;e&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;α&lt;/mml:mi&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:msub&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;β&lt;/mml:mi&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;/mml:msub&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;e&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;α&lt;/mml:mi&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;/mml:msub&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:mo&gt;⋯&lt;/mml:mo&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;β&lt;/mml:mi&gt; &lt;mml:mi&gt;s&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;e&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;α&lt;/mml:mi&gt; &lt;mml:mi&gt;s&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;/mml:mrow&gt; &lt;/mml:mtd&gt; &lt;/mml:mtr&gt; &lt;/mml:mtable&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; and $$begin{aligned} f^{n}(z)f^{(k)}(z)+L_d(z,f)=sum ^{s}_{i=1}p_i(z)e^{alpha _i{(z)}}, end{aligned}$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mtable&gt; &lt;mml:mtr&gt; &lt;mml:mtd&gt; &lt;mml:mrow&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;L&lt;/mml:mi&gt; &lt;mml:mi&gt;d&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:munderover&gt; &lt;mml:mo&gt;∑&lt;/mml:mo&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;i&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;s&lt;/mml:mi&gt; &lt;/mml:munderover&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:mi&gt;i&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;e&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;α&lt;/mml:mi&gt; &lt;mml:mi&gt;i&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:mtd&gt; &lt;/mml:mtr&gt; &lt;/mml:mtable&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; where n , s are positive integers, $$nge s+2,$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;mml:mo&gt;≥&lt;/mml:mo&gt;","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134960158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Lie Algebroid Structure for Vector Bundles of Finite Rank Isomorphic to Tangent Bundle of Their Base Space 有限秩向量束与基空间切束同构的李代数结构
4区 物理与天体物理
Journal of Nonlinear Mathematical Physics Pub Date : 2023-09-20 DOI: 10.1007/s44198-023-00135-3
Akbar Dehghan Nezhad, Mina Moghaddam Zeabadi
{"title":"A Lie Algebroid Structure for Vector Bundles of Finite Rank Isomorphic to Tangent Bundle of Their Base Space","authors":"Akbar Dehghan Nezhad, Mina Moghaddam Zeabadi","doi":"10.1007/s44198-023-00135-3","DOIUrl":"https://doi.org/10.1007/s44198-023-00135-3","url":null,"abstract":"Abstract We define a Lie algebroid structure for a class of vector bundles of rank k over a k -dimensional smooth manifold W , which are isomorphic to the tangent bundle TW . We construct an exciting example of these types of vector bundles. This example is constructed based on partial Caputo fractional derivatives. We call this vector bundle a fractional vector bundle and denote it by $${mathscr {F}}^{nu } {mathscr {W}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mi>ν</mml:mi> </mml:msup> <mml:mi>W</mml:mi> </mml:mrow> </mml:math> .","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"172 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136308354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Percolation Analysis of COVID-19 Epidemic COVID-19流行的渗透分析
4区 物理与天体物理
Journal of Nonlinear Mathematical Physics Pub Date : 2023-09-13 DOI: 10.1007/s44198-023-00139-z
Ramin Kazemi, Mohammad Qasem Vahidi-Asl
{"title":"Percolation Analysis of COVID-19 Epidemic","authors":"Ramin Kazemi, Mohammad Qasem Vahidi-Asl","doi":"10.1007/s44198-023-00139-z","DOIUrl":"https://doi.org/10.1007/s44198-023-00139-z","url":null,"abstract":"Abstract The spread of COVID-19 can be greatly influenced by human mobility. However, implementing control measures based on restrictions can be costly. That is why it is crucial to develop a quarantine strategy that can minimize the spread of the disease while also reducing costs. This article focuses on determining the percolation threshold of COVID-19 in Tehran province using a square lattice and two types of city connections. The study identifies the number of roads that need to be closed and the cities that should be quarantined. Monte Carlo simulations using the Newman and Ziff and Union-Find algorithms were conducted through the $$text {SEAIRD}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mtext>SEAIRD</mml:mtext> </mml:math> model to assess the effectiveness of the proposed measures. The results showed a possible reduction of 81 $$%$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>%</mml:mo> </mml:math> in disease spread. This approach can be used in other regions to assist in the development of public health policies.","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135741872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Symplectic Simulation on Soliton-Collision for Nonlinear Perturbed Schrödinger Equation 非线性摄动Schrödinger方程孤子碰撞的多辛模拟
4区 物理与天体物理
Journal of Nonlinear Mathematical Physics Pub Date : 2023-09-05 DOI: 10.1007/s44198-023-00137-1
Peijun Zhang, Weipeng Hu, Zhen Wang, Zhijun Qiao
{"title":"Multi-Symplectic Simulation on Soliton-Collision for Nonlinear Perturbed Schrödinger Equation","authors":"Peijun Zhang, Weipeng Hu, Zhen Wang, Zhijun Qiao","doi":"10.1007/s44198-023-00137-1","DOIUrl":"https://doi.org/10.1007/s44198-023-00137-1","url":null,"abstract":"Abstract Seeking solitary wave solutions and revealing their interactional characteristics for nonlinear evolution equations help us lot to comprehend the motion laws of the microparticles. As a local nonlinear dynamic behavior, the soliton-collision is difficult to be reproduced numerically. In this paper, the soliton-collision process in the nonlinear perturbed Schrödinger equation is simulated employing the multi-symplectic method. The multi-symplectic formulations are derived including the multi-symplectic form and three local conservation laws of the nonlinear perturbed Schrödinger equation. Employing the implicit midpoint rule, we construct a multi-symplectic scheme, which is equivalent to the Preissmann box scheme, for the nonlinear perturbed Schrödinger equation. The elegant structure-preserving properties of the multi-symplectic scheme are illustrated by the tiny maximum absolute residual of the discrete multi-symplectic structure at each time step in the numerical simulations. The effects of the perturbation strength on the soliton-collision in the nonlinear perturbed Schrödinger equation are reported in the numerical results in detail.","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Ricci Solitons on Three-Dimensional Lorentzian Walker Manifolds 三维洛伦兹沃克流形上的广义Ricci孤子
IF 0.7 4区 物理与天体物理
Journal of Nonlinear Mathematical Physics Pub Date : 2023-08-18 DOI: 10.1007/s44198-023-00134-4
V. Pirhadi, Gh. Fasihi-Ramandi, S. Azami
{"title":"Generalized Ricci Solitons on Three-Dimensional Lorentzian Walker Manifolds","authors":"V. Pirhadi, Gh. Fasihi-Ramandi, S. Azami","doi":"10.1007/s44198-023-00134-4","DOIUrl":"https://doi.org/10.1007/s44198-023-00134-4","url":null,"abstract":"","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48998465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fractional Perspective on the Dynamics of HIV, Considering the Interaction of Viruses and Immune System with the Effect of Antiretroviral Therapy 考虑病毒和免疫系统相互作用与抗逆转录病毒治疗效果的HIV动力学的分数观点
IF 0.7 4区 物理与天体物理
Journal of Nonlinear Mathematical Physics Pub Date : 2023-08-05 DOI: 10.1007/s44198-023-00133-5
Tao-Qian Tang, Rashid Jan, H. Ahmad, Z. Shah, N. Vrinceanu, Mihaela Racheriu
{"title":"A Fractional Perspective on the Dynamics of HIV, Considering the Interaction of Viruses and Immune System with the Effect of Antiretroviral Therapy","authors":"Tao-Qian Tang, Rashid Jan, H. Ahmad, Z. Shah, N. Vrinceanu, Mihaela Racheriu","doi":"10.1007/s44198-023-00133-5","DOIUrl":"https://doi.org/10.1007/s44198-023-00133-5","url":null,"abstract":"","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46914146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotics of Solutions for Periodic Problem for the Korteweg-de Vries Equation with Landau Damping, Pumping and Higher Order Convective Non Linearity 具有朗道阻尼、抽运和高阶对流非线性的Korteweg-de Vries方程周期问题解的渐近性
IF 0.7 4区 物理与天体物理
Journal of Nonlinear Mathematical Physics Pub Date : 2023-07-31 DOI: 10.1007/s44198-023-00131-7
B. Juárez-Campos, J. Villela‐Aguilar, Rafael Carreño-Bolaños
{"title":"Asymptotics of Solutions for Periodic Problem for the Korteweg-de Vries Equation with Landau Damping, Pumping and Higher Order Convective Non Linearity","authors":"B. Juárez-Campos, J. Villela‐Aguilar, Rafael Carreño-Bolaños","doi":"10.1007/s44198-023-00131-7","DOIUrl":"https://doi.org/10.1007/s44198-023-00131-7","url":null,"abstract":"","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52860191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信