{"title":"On Meromorphic Solutions of Non-linear Differential-Difference Equations","authors":"MingXin Zhao, Zhigang Huang","doi":"10.1007/s44198-023-00136-2","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate the non-existence of transcendental entire solutions for non-linear differential-difference equations of the forms $$\\begin{aligned} f^{n}(z)+Q(z,f)=\\beta _{1}e^{\\alpha _{1}z}+\\beta _{2}e^{\\alpha _{2}z}+\\cdots +\\beta _{s}e^{\\alpha _{s}z} \\end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msup> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>Q</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>,</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>z</mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mi>z</mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mi>z</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> and $$\\begin{aligned} f^{n}(z)f^{(k)}(z)+L_d(z,f)=\\sum ^{s}_{i=1}p_i(z)e^{\\alpha _i{(z)}}, \\end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msup> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>,</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:munderover> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>s</mml:mi> </mml:munderover> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> where n , s are positive integers, $$n\\ge s+2,$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mi>s</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> Q ( z , f ) is a differential-difference polynomial in f of degree d .","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"45 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44198-023-00136-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we investigate the non-existence of transcendental entire solutions for non-linear differential-difference equations of the forms $$\begin{aligned} f^{n}(z)+Q(z,f)=\beta _{1}e^{\alpha _{1}z}+\beta _{2}e^{\alpha _{2}z}+\cdots +\beta _{s}e^{\alpha _{s}z} \end{aligned}$$ fn(z)+Q(z,f)=β1eα1z+β2eα2z+⋯+βseαsz and $$\begin{aligned} f^{n}(z)f^{(k)}(z)+L_d(z,f)=\sum ^{s}_{i=1}p_i(z)e^{\alpha _i{(z)}}, \end{aligned}$$ fn(z)f(k)(z)+Ld(z,f)=∑i=1spi(z)eαi(z), where n , s are positive integers, $$n\ge s+2,$$ n≥s+2, Q ( z , f ) is a differential-difference polynomial in f of degree d .
摘要本文研究了$$\begin{aligned} f^{n}(z)+Q(z,f)=\beta _{1}e^{\alpha _{1}z}+\beta _{2}e^{\alpha _{2}z}+\cdots +\beta _{s}e^{\alpha _{s}z} \end{aligned}$$ f n (z) + Q (z, f) = β 1 e α 1 z + β 2 e α 2 z +⋯⋯+ β s e α s z和$$\begin{aligned} f^{n}(z)f^{(k)}(z)+L_d(z,f)=\sum ^{s}_{i=1}p_i(z)e^{\alpha _i{(z)}}, \end{aligned}$$ f n (z) f (k) (z) + L d (z, f) =∑i = 1 s p i (z) e α i (z),其中n, s为正整数,$$n\ge s+2,$$ n≥s + 2, Q (z),F)是F中阶为d的微分-差分多项式。
期刊介绍:
Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles.
Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics.
The main subjects are:
-Nonlinear Equations of Mathematical Physics-
Quantum Algebras and Integrability-
Discrete Integrable Systems and Discrete Geometry-
Applications of Lie Group Theory and Lie Algebras-
Non-Commutative Geometry-
Super Geometry and Super Integrable System-
Integrability and Nonintegrability, Painleve Analysis-
Inverse Scattering Method-
Geometry of Soliton Equations and Applications of Twistor Theory-
Classical and Quantum Many Body Problems-
Deformation and Geometric Quantization-
Instanton, Monopoles and Gauge Theory-
Differential Geometry and Mathematical Physics