{"title":"Some Soliton Hierarchies Associated with Lie Algebras $$\\mathfrak {sp}(4)$$ and $$\\mathfrak {so}(5)$$","authors":"Baiying He, Shiyuan Liu, Siyu Gao","doi":"10.1007/s44198-023-00140-6","DOIUrl":null,"url":null,"abstract":"Abstract Based on the symplectic Lie algebra $$\\mathfrak {sp}(4)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>sp</mml:mi> <mml:mo>(</mml:mo> <mml:mn>4</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , we obtain two integrable hierarchies of $$\\mathfrak {sp}(4)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>sp</mml:mi> <mml:mo>(</mml:mo> <mml:mn>4</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , and by using the trace identity, we give their Hamiltonian structures. Then, we use $$2\\times 2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>×</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> Kronecker product, and construct integrable coupling systems of one soliton equation. Next, we consider two bases of Lie algebra $$\\mathfrak {so}(5)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>so</mml:mi> <mml:mo>(</mml:mo> <mml:mn>5</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , and we get the corresponding two integrable hierarchies. Finally, we discuss the relation between the integrable hierarchies of two different bases associated with Lie algebra $$\\mathfrak {so}(5)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>so</mml:mi> <mml:mo>(</mml:mo> <mml:mn>5</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> .","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44198-023-00140-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Based on the symplectic Lie algebra $$\mathfrak {sp}(4)$$ sp(4) , we obtain two integrable hierarchies of $$\mathfrak {sp}(4)$$ sp(4) , and by using the trace identity, we give their Hamiltonian structures. Then, we use $$2\times 2$$ 2×2 Kronecker product, and construct integrable coupling systems of one soliton equation. Next, we consider two bases of Lie algebra $$\mathfrak {so}(5)$$ so(5) , and we get the corresponding two integrable hierarchies. Finally, we discuss the relation between the integrable hierarchies of two different bases associated with Lie algebra $$\mathfrak {so}(5)$$ so(5) .
期刊介绍:
Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles.
Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics.
The main subjects are:
-Nonlinear Equations of Mathematical Physics-
Quantum Algebras and Integrability-
Discrete Integrable Systems and Discrete Geometry-
Applications of Lie Group Theory and Lie Algebras-
Non-Commutative Geometry-
Super Geometry and Super Integrable System-
Integrability and Nonintegrability, Painleve Analysis-
Inverse Scattering Method-
Geometry of Soliton Equations and Applications of Twistor Theory-
Classical and Quantum Many Body Problems-
Deformation and Geometric Quantization-
Instanton, Monopoles and Gauge Theory-
Differential Geometry and Mathematical Physics