有限秩向量束与基空间切束同构的李代数结构

IF 1.4 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED
Akbar Dehghan Nezhad, Mina Moghaddam Zeabadi
{"title":"有限秩向量束与基空间切束同构的李代数结构","authors":"Akbar Dehghan Nezhad, Mina Moghaddam Zeabadi","doi":"10.1007/s44198-023-00135-3","DOIUrl":null,"url":null,"abstract":"Abstract We define a Lie algebroid structure for a class of vector bundles of rank k over a k -dimensional smooth manifold W , which are isomorphic to the tangent bundle TW . We construct an exciting example of these types of vector bundles. This example is constructed based on partial Caputo fractional derivatives. We call this vector bundle a fractional vector bundle and denote it by $${\\mathscr {F}}^{\\nu } {\\mathscr {W}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mi>ν</mml:mi> </mml:msup> <mml:mi>W</mml:mi> </mml:mrow> </mml:math> .","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"172 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lie Algebroid Structure for Vector Bundles of Finite Rank Isomorphic to Tangent Bundle of Their Base Space\",\"authors\":\"Akbar Dehghan Nezhad, Mina Moghaddam Zeabadi\",\"doi\":\"10.1007/s44198-023-00135-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We define a Lie algebroid structure for a class of vector bundles of rank k over a k -dimensional smooth manifold W , which are isomorphic to the tangent bundle TW . We construct an exciting example of these types of vector bundles. This example is constructed based on partial Caputo fractional derivatives. We call this vector bundle a fractional vector bundle and denote it by $${\\\\mathscr {F}}^{\\\\nu } {\\\\mathscr {W}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mi>ν</mml:mi> </mml:msup> <mml:mi>W</mml:mi> </mml:mrow> </mml:math> .\",\"PeriodicalId\":48904,\"journal\":{\"name\":\"Journal of Nonlinear Mathematical Physics\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44198-023-00135-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44198-023-00135-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要定义了k维光滑流形W上一类秩k的向量束的李代数结构,它们与切束TW同构。我们构造了这类向量束的一个令人兴奋的例子。这个例子是基于偏卡普托分数阶导数构造的。我们称这个向量束为分数向量束,用$${\mathscr {F}}^{\nu } {\mathscr {W}}$$ F ν W表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lie Algebroid Structure for Vector Bundles of Finite Rank Isomorphic to Tangent Bundle of Their Base Space
Abstract We define a Lie algebroid structure for a class of vector bundles of rank k over a k -dimensional smooth manifold W , which are isomorphic to the tangent bundle TW . We construct an exciting example of these types of vector bundles. This example is constructed based on partial Caputo fractional derivatives. We call this vector bundle a fractional vector bundle and denote it by $${\mathscr {F}}^{\nu } {\mathscr {W}}$$ F ν W .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonlinear Mathematical Physics
Journal of Nonlinear Mathematical Physics PHYSICS, MATHEMATICAL-PHYSICS, MATHEMATICAL
CiteScore
1.60
自引率
0.00%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles. Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics. The main subjects are: -Nonlinear Equations of Mathematical Physics- Quantum Algebras and Integrability- Discrete Integrable Systems and Discrete Geometry- Applications of Lie Group Theory and Lie Algebras- Non-Commutative Geometry- Super Geometry and Super Integrable System- Integrability and Nonintegrability, Painleve Analysis- Inverse Scattering Method- Geometry of Soliton Equations and Applications of Twistor Theory- Classical and Quantum Many Body Problems- Deformation and Geometric Quantization- Instanton, Monopoles and Gauge Theory- Differential Geometry and Mathematical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信