New Phytologist最新文献

筛选
英文 中文
QuantAS: a comprehensive pipeline to study alternative splicing by absolute quantification of splice isoforms QuantAS:通过剪接异构体的绝对定量研究替代剪接的综合途径
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-08-18 DOI: 10.1111/nph.19193
Yu-Chen Song, Mo-Xian Chen, Kai-Lu Zhang, Anireddy S. N. Reddy, Fu-Liang Cao, Fu-Yuan Zhu
{"title":"QuantAS: a comprehensive pipeline to study alternative splicing by absolute quantification of splice isoforms","authors":"Yu-Chen Song,&nbsp;Mo-Xian Chen,&nbsp;Kai-Lu Zhang,&nbsp;Anireddy S. N. Reddy,&nbsp;Fu-Liang Cao,&nbsp;Fu-Yuan Zhu","doi":"10.1111/nph.19193","DOIUrl":"https://doi.org/10.1111/nph.19193","url":null,"abstract":"<p>Alternative splicing (AS) is a mechanism by which cells generate abundant protein diversity from a limited number of genes (Baralle &amp; Giudice, <span>2017</span>). AS plays a crucial role in regulating various life activities such as growth, development, and aging in plants (Zhu <i>et al</i>., <span>2017</span>; Godoy Herz &amp; Kornblihtt, <span>2019</span>; Jabre <i>et al</i>., <span>2019</span>; Chen <i>et al</i>., <span>2020</span>; Reddy <i>et al</i>., <span>2020</span>; Zhang <i>et al</i>., <span>2020</span>), where it greatly influences plant growth, development, and response to biotic and abiotic stresses (Motion <i>et al</i>., <span>2015</span>; Laloum <i>et al</i>., <span>2018</span>; Chaudhary <i>et al</i>., <span>2019</span>; Chen <i>et al</i>., <span>2021</span>; Ganie &amp; Reddy, <span>2021</span>; Saini <i>et al</i>., <span>2021</span>; Zhu <i>et al</i>., <span>2023</span>; Supporting Information Fig. S1). The traditional method for the identification of AS is semi-quantitative RT-PCR, which is easy to perform (Palusa <i>et al</i>., <span>2007</span>; Li <i>et al</i>., <span>2020</span>; Riegler <i>et al</i>., <span>2021</span>; Han <i>et al</i>., <span>2022</span>). Quantitative PCR (qPCR) is also widely used in AS research, as it enables real-time monitoring of fluorescence signals and accurate quantification of isoform copy numbers through the use of specific primers (Hefti <i>et al</i>., <span>2018</span>; Liu <i>et al</i>., <span>2018</span>; Huang <i>et al</i>., <span>2021</span>). With the emergence of digital PCR (dPCR), the identification methods of AS have become more diversified, which disperses each single target fragment into separate droplets as much as possible through the calculation of positive droplets (Fig. S2; Gao <i>et al</i>., <span>2021</span>).</p><p>Based on the urgent need for the accurate quantification of various isoforms, an AS detection method called QuantAS was established (Fig. 1), which allows us to accurately quantify all isoforms of genes based on absolute quantification technology and specific primer design. The method utilizes isoform-specific primers to overcome the isoform identification difficulty caused by different AS events and is designed by using the functional coding region as the isoform structure classification unit to ensure isoform independence (Fig. 2a). RT-qPCR enables real-time monitoring of changes in the fluorescence signal, quantification of differences between expression levels, and simultaneous detection of multiple in a single reaction. According to the copy number of different isoforms, isoform expression patterns can be identified by combining with absolute quantitative techniques. This method greatly increases the accuracy of identification and reduces the cost of repeated experiments. Furthermore, the absolute quantification of AS isoforms employing the combination of qPCR and dPCR could provide their respective advantages, thus rapidly obtaining all isoform info","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"928-939"},"PeriodicalIF":9.4,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19193","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Iron-dependent regulation of leaf senescence: a key role for the H2B histone variant HTB4 铁依赖性调节叶片衰老:H2B组蛋白变体HTB4的关键作用
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-08-15 DOI: 10.1111/nph.19199
Christian Dubos
{"title":"Iron-dependent regulation of leaf senescence: a key role for the H2B histone variant HTB4","authors":"Christian Dubos","doi":"10.1111/nph.19199","DOIUrl":"https://doi.org/10.1111/nph.19199","url":null,"abstract":"<p>Iron is an essential micronutrient for plant growth and development, as well as for crop productivity and the quality of their derived products (Briat <i>et al</i>., <span>2015</span>). This is because iron is a co-factor for several metalloproteins involved in essential physiological processes such as respiration in mitochondria or photosynthesis in chloroplasts. In most soils, iron is present in the form of insoluble oxides/hydroxides rendering it poorly available to plants. To cope with this poor bioavailability, plants have evolved sophisticated strategies to take up iron from soils (Berger <i>et al</i>., <span>2023</span>; Li <i>et al</i>., <span>2023</span>). Arabidopsis plants preferentially use the reduction-based strategy (the so-called Strategy I), as do most dicots and nongraminous monocots. This strategy relies on the secretion of protons into the rhizosphere by AHA2 (ARABIDOPSIS H<sup>+</sup> ATPASE 2) to decrease the pH of the soil solution and solubilize oxidized iron (Fe<sup>3+</sup>), which is then reduced to Fe<sup>2+</sup> by FRO2 (ferric reduction oxidases 2), and subsequently taken up into the root by IRT1 (iron-regulated transporter 1). This process is tightly regulated since, in excess, iron is also detrimental to the plant because of its capacity to generate reactive oxygen species (ROS) via the Fenton reaction.</p><p>The regulation of Iron homeostasis is well-conserved in plants, and is primarily controlled at the transcriptional level (Berger <i>et al</i>., <span>2023</span>; Li <i>et al</i>., <span>2023</span>). It relies on an intricate regulatory network involving several regulatory proteins, among which the bHLH (basic helix–loop–helix) transcription factors play a preponderant role (Fig. 1). For instance, Arabidopsis has 17 different bHLH proteins (from six bHLH clades) that regulate iron homeostasis. This regulatory network is composed of two modules. The first module relies on FIT/bHLH29 (FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR; clade IIIa). FIT is a direct positive regulator of <i>FRO2</i> and <i>IRT1</i> expression (Fig. 1). To achieve its function, FIT interacts with bHLH38, bHLH39, bHLH100, and bHLH101 (clade Ib), forming heterodimers with partially overlapping roles. In the second module, another set of bHLH transcription factors positively regulate the expression of <i>FIT</i> and clade Ib bHLHs (Fig. 1). It involves ILR3/bHLH105 (iaa-leucine resistant 3), IDT1/bHLH34 (iron deficiency tolerant 1), bHLH104, bHLH115 from clade IVc, and URI/bLHL121 (UPSTREAM REGULATOR OF IRT1) from clade IVb (Tissot <i>et al</i>., <span>2019</span>; Gao <i>et al</i>., <span>2020</span>). By contrast, PYE/bHLH47 (POPEYE; clade IVb) is a negative regulator of clade Ib bHLH expression (Pu &amp; Liang, <span>2023</span>).</p><p>In their study, Yang <i>et al</i>. demonstrated that the H2B histone variant HTB4 negatively regulates leaf senescence in an iron-dependent manner. For instance, <i>HTB4</i> expression is in","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 2","pages":"461-463"},"PeriodicalIF":9.4,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19199","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41081785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arabidopsis Tubby domain-containing F-box proteins positively regulate immunity by modulating PI4Kβ protein levels 拟南芥含 Tubby 结构域的 F-box 蛋白通过调节 PI4Kβ 蛋白水平积极调节免疫力
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-08-12 DOI: 10.1111/nph.19187
Karen Thulasi Devendrakumar, Charles Copeland, Christopher Adamchek, Xionghui Zhong, Xingchuan Huang, Joshua M. Gendron, Xin Li
{"title":"Arabidopsis Tubby domain-containing F-box proteins positively regulate immunity by modulating PI4Kβ protein levels","authors":"Karen Thulasi Devendrakumar,&nbsp;Charles Copeland,&nbsp;Christopher Adamchek,&nbsp;Xionghui Zhong,&nbsp;Xingchuan Huang,&nbsp;Joshua M. Gendron,&nbsp;Xin Li","doi":"10.1111/nph.19187","DOIUrl":"https://doi.org/10.1111/nph.19187","url":null,"abstract":"<p>\u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 1","pages":"354-371"},"PeriodicalIF":9.4,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19187","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6100483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Vegetative phase change causes age-dependent changes in phenotypic plasticity 营养性相变导致表型可塑性的年龄依赖性变化
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-08-12 DOI: 10.1111/nph.19174
Erica H. Lawrence-Paul, R. Scott Poethig, Jesse R. Lasky
{"title":"Vegetative phase change causes age-dependent changes in phenotypic plasticity","authors":"Erica H. Lawrence-Paul,&nbsp;R. Scott Poethig,&nbsp;Jesse R. Lasky","doi":"10.1111/nph.19174","DOIUrl":"https://doi.org/10.1111/nph.19174","url":null,"abstract":"<p>\u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 2","pages":"613-625"},"PeriodicalIF":9.4,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41081958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A time tree for the evolution of insect, vertebrate, wind, and water pollination in the angiosperms 被子植物中昆虫、脊椎动物、风和水授粉进化的时间树
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-08-11 DOI: 10.1111/nph.19201
Susanne S. Renner
{"title":"A time tree for the evolution of insect, vertebrate, wind, and water pollination in the angiosperms","authors":"Susanne S. Renner","doi":"10.1111/nph.19201","DOIUrl":"https://doi.org/10.1111/nph.19201","url":null,"abstract":"<p>There is much circumstantial evidence that flowering plants were diverse by the Lower Cretaceous and were pollinated by insects (Arber &amp; Parkin, <span>1907</span>; Crepet &amp; Friis, <span>1987</span>). Arguments supporting this come from extant and fossil flower morphology, fossilized traces of interactions, and the pollination modes of surviving early lineages. First, some extinct gymnosperms had bisporangiate cones (with both micro- and megasporangia) surrounded by bracts (Fig. 1), and many such cones show traces of having been chewed by mandibulate insects (Peris <i>et al</i>., <span>2017</span>). Fossils of flower-associated flies also provide evidence of the existence of strobilus–pollinator interactions from the Permian to the Jurassic (Ren, <span>1998</span>; Ren <i>et al</i>., <span>2009</span>; Khramov <i>et al.</i>, <span>2023</span>). Second, if flowers evolved from bisporangiate strobili, they were not well suited for wind pollination because simultaneous optimization for pollen export and pollen capture is structurally difficult. The angiosperms' defining enclosure of the megasporangium inside surrounding structures may also point to ancestral insect pollination, as argued by Arber &amp; Parkin (<span>1907</span>: 73), ‘In the case of the angiosperms such primitive entomophily was preserved and rendered permanent by a transference of the pollen-collecting mechanism from the ovule itself to the carpel or megasporophyll and by the closure of this organ.’ Third, all angiosperms, but no living gymnosperm, produce pollenkitt, an oily substance on the surface of pollen that serves as a glue to attach pollen to animal vectors (Hesse, <span>1980</span>). In wind-pollinated plants, pollenkitt abundance is secondarily reduced. Lastly, the oldest lineages of flowering plants that still survive today are pollinated by flies, moths, and beetles (Luo <i>et al</i>., <span>2018</span>).</p><p>While insect pollination thus undoubtedly played a decisive role in the evolution of flowers, a phylogenetically informed analysis of pollination by insects, vertebrates, wind, and water across a full modern phylogeny of plants has been lacking. This is what Stephens <i>et al</i>. now provide in an article published in this issue of <i>New Phytologist</i> (<span>2023</span>; 880–891). Using a time-calibrated phylogeny with 1201 species representing the major lineages of flowering plants, together with geographic occurrence data, Stephens <i>et al</i>. quantified the timing and environmental associations of pollination shifts. Where possible, they scored pollination at the species level, either from published fieldwork (<i>n</i> = 432) or from the pollinator syndrome approach (<i>n</i> = 728). Where no information was available for a particular species, taxa were scored at genus (<i>n</i> = 131) or family (<i>n</i> = 4) level. In some analyses, 180 taxa with missing or polymorphic data were excluded from the analyses.</p><p>All major angiosperm clades (","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 2","pages":"464-465"},"PeriodicalIF":9.4,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41081417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Occurrence and conversion of progestogens and androgens are conserved in land plants 陆生植物中保留了孕激素和雄激素的存在和转化过程
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-08-09 DOI: 10.1111/nph.19163
Glendis Shiko, Max-Jonas Paulmann, Felix Feistel, Maria Ntefidou, Vanessa Hermann-Ene, Walter Vetter, Benedikt Kost, Grit Kunert, Julie A. Z. Zedler, Michael Reichelt, Ralf Oelmüller, Jan Klein
{"title":"Occurrence and conversion of progestogens and androgens are conserved in land plants","authors":"Glendis Shiko,&nbsp;Max-Jonas Paulmann,&nbsp;Felix Feistel,&nbsp;Maria Ntefidou,&nbsp;Vanessa Hermann-Ene,&nbsp;Walter Vetter,&nbsp;Benedikt Kost,&nbsp;Grit Kunert,&nbsp;Julie A. Z. Zedler,&nbsp;Michael Reichelt,&nbsp;Ralf Oelmüller,&nbsp;Jan Klein","doi":"10.1111/nph.19163","DOIUrl":"https://doi.org/10.1111/nph.19163","url":null,"abstract":"<p>\u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 1","pages":"318-337"},"PeriodicalIF":9.4,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5770037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzyme-based kinetic modelling of ASC–GSH cycle during tomato fruit development reveals the importance of reducing power and ROS availability 基于酶的番茄果实发育过程中 ASC-GSH 循环动力学模型揭示了还原力和 ROS 供应的重要性
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-08-07 DOI: 10.1111/nph.19160
Guillaume Decros, Thomas Dussarrat, Pierre Baldet, Cédric Cassan, Cécile Cabasson, Martine Dieuaide-Noubhani, Alice Destailleur, Amélie Flandin, Sylvain Prigent, Kentaro Mori, Sophie Colombié, Joana Jorly, Yves Gibon, Bertrand Beauvoit, Pierre Pétriacq
{"title":"Enzyme-based kinetic modelling of ASC–GSH cycle during tomato fruit development reveals the importance of reducing power and ROS availability","authors":"Guillaume Decros,&nbsp;Thomas Dussarrat,&nbsp;Pierre Baldet,&nbsp;Cédric Cassan,&nbsp;Cécile Cabasson,&nbsp;Martine Dieuaide-Noubhani,&nbsp;Alice Destailleur,&nbsp;Amélie Flandin,&nbsp;Sylvain Prigent,&nbsp;Kentaro Mori,&nbsp;Sophie Colombié,&nbsp;Joana Jorly,&nbsp;Yves Gibon,&nbsp;Bertrand Beauvoit,&nbsp;Pierre Pétriacq","doi":"10.1111/nph.19160","DOIUrl":"https://doi.org/10.1111/nph.19160","url":null,"abstract":"<p>\u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 1","pages":"242-257"},"PeriodicalIF":9.4,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19160","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5743236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Decadal soil warming decreased vascular plant above and belowground production in a subarctic grassland by inducing nitrogen limitation 几十年的土壤变暖通过诱导氮限制降低了亚北极草原地下和地上维管植物的产量
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-08-07 DOI: 10.1111/nph.19177
Chao Fang, Niel Verbrigghe, Bjarni D. Sigurdsson, Ivika Ostonen, Niki I. W. Leblans, Sara Mara?ón-Jiménez, Lucia Fuchslueger, Páll Siguresson, Kathiravan Meeran, Miguel Portillo-Estrada, Erik Verbruggen, Andreas Richter, Jordi Sardans, Josep Pe?uelas, Michael Bahn, Sara Vicca, Ivan A. Janssens
{"title":"Decadal soil warming decreased vascular plant above and belowground production in a subarctic grassland by inducing nitrogen limitation","authors":"Chao Fang,&nbsp;Niel Verbrigghe,&nbsp;Bjarni D. Sigurdsson,&nbsp;Ivika Ostonen,&nbsp;Niki I. W. Leblans,&nbsp;Sara Mara?ón-Jiménez,&nbsp;Lucia Fuchslueger,&nbsp;Páll Siguresson,&nbsp;Kathiravan Meeran,&nbsp;Miguel Portillo-Estrada,&nbsp;Erik Verbruggen,&nbsp;Andreas Richter,&nbsp;Jordi Sardans,&nbsp;Josep Pe?uelas,&nbsp;Michael Bahn,&nbsp;Sara Vicca,&nbsp;Ivan A. Janssens","doi":"10.1111/nph.19177","DOIUrl":"https://doi.org/10.1111/nph.19177","url":null,"abstract":"<div>\u0000 \u0000 <p>\u0000 </p><ul>\u0000 \u0000 <li>Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied.</li>\u0000 \u0000 <li>Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.3°C and +7.9°C) on below and aboveground plant biomass stocks and production in a subarctic grassland.</li>\u0000 \u0000 <li>Soil warming did not change standing root biomass and even decreased fine root production and reduced aboveground biomass and production. Decadal soil warming also did not significantly alter the root–shoot ratio. The linear stepwise regression model suggested that following 10 yr of soil warming, temperature was no longer the direct driver of these responses, but losses of soil N were. Soil N losses, due to warming-induced decreases in organic matter and water retention capacity, were identified as key driver of the decreased above and belowground production. The reduction in fine root production was accompanied by thinner roots with increased specific root area.</li>\u0000 \u0000 <li>These results indicate that after a decade of soil warming, plant productivity in the studied subarctic grassland was affected by soil warming mainly by the reduction in soil N.</li>\u0000 </ul>\u0000 </div>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 2","pages":"565-576"},"PeriodicalIF":9.4,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41081586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering the secrets to vibrant flowers: the role of carotenoid esters and their interaction with plastoglobules in plant pigmentation 揭示充满活力的花朵的秘密:类胡萝卜素酯在植物色素沉着中的作用及其与质体红蛋白的相互作用
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-08-07 DOI: 10.1111/nph.19185
Jacinta L. Watkins
{"title":"Uncovering the secrets to vibrant flowers: the role of carotenoid esters and their interaction with plastoglobules in plant pigmentation","authors":"Jacinta L. Watkins","doi":"10.1111/nph.19185","DOIUrl":"https://doi.org/10.1111/nph.19185","url":null,"abstract":"<p>Carotenoids, once biosynthesised, participate in a range of processes within plants including serving as precursors for the biosynthesis of multiple hormones, acting as signalling molecules and apocarotenoid aroma compounds, as well as playing roles in the stabilisation of photosystems and acting as antioxidants. These functions contribute to a high turnover rate of carotenoids within leaves (Beisel <i>et al</i>., <span>2010</span>). Another facet of carotenoids is in attracting insects and animals to facilitate successful reproduction and seed dispersal due to their vibrant colours and presence in fruits and flowers. However, this process relies upon their stable storage in the plastids of non-photosynthetic tissue. The quantity and composition of carotenoids is highly species and variety specific, but generally, the total carotenoid content correlates to the colour intensity in these organs. The esterification of xanthophylls (oxygenated carotenoids) to fatty acids positively influences total carotenoid accumulation by enhancing their packaging into specialised structures within plastids, called plastoglobules. Esterification also likely protects xanthophylls from catabolism through steric hindrance of enzymes that catalyse carotenoid cleavage, such as the carotenoid cleavage dioxygenases and the 9-<i>cis</i>-epoxycarotenoid dioxygenases, although this remains to be demonstrated. Despite the positive influence on total carotenoid accumulation, we are only beginning to understand the molecular mechanisms involved in xanthophyll ester production.</p><p>Using a comprehensive set of experiments, Li <i>et al</i>. unravel the genetic basis of esterification in rapeseed flowers. Through a combination of map-based cloning, loss-of-function studies using CRISPR/Cas9 technology and genetic complementation, two homologous genes from the esterase/lipase/thioesterase (ELT) family of acyltransferases were identified that function redundantly to direct petal colour formation and are annotated as xanthophyll esterases. The authors used liquid chromatography coupled with UV/vis spectroscopy and high-resolution mass spectroscopy to identify individual xanthophyll ester species, an undertaking which is notoriously difficult (Mercadante <i>et al</i>., <span>2017</span>). Interestingly, in white petals of both a naturally occurring cultivar and the xanthophyll esterase double knockout line, <i>pcs</i>, not only are esterified xanthophylls absent, but total carotenoid content is greatly reduced, signifying that in addition to biosynthesis, the stable storage and protection of carotenoids from turnover is required to produce the vivid yellow petal phenotype. The authors further probed the metabolome and transcriptome of the xanthophyll esterase double mutant line <i>pcs</i> and discovered that in the white petals of the mutant, metabolic flux is redirected to lipid metabolism and storage. They also observed no change in the expression of carotenoid biosynthesis ge","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 1","pages":"7-9"},"PeriodicalIF":9.4,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19185","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6020381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing eggs on eggplant: a common naturally emitted plant volatile could replace insecticides in the ‘king of vegetables’ 减少茄子上的鸡蛋:一种常见的自然排放的植物挥发性物质可以取代“蔬菜之王”中的杀虫剂
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-08-07 DOI: 10.1111/nph.19172
Kelsey J. R. P. Byers
{"title":"Reducing eggs on eggplant: a common naturally emitted plant volatile could replace insecticides in the ‘king of vegetables’","authors":"Kelsey J. R. P. Byers","doi":"10.1111/nph.19172","DOIUrl":"https://doi.org/10.1111/nph.19172","url":null,"abstract":"<p>The development of insecticidal chemicals (commonly termed pesticides) has revolutionized the process of cultivation in agriculture; yet, similarly to the development of antimicrobial resistance in pathogens, insects can rapidly develop resistance to these chemicals (Alyokhin &amp; Chen, <span>2017</span>). Pesticides can also negatively affect beneficial insects such as pollinators and natural enemies of herbivorous insects (Bourguet &amp; Guillemaud, <span>2016</span>). Extensive pesticide use also poses risks to farmers and growers who apply the pesticides, as well as consumers who eat the resulting produce (Del Prado-Lu, <span>2015</span>; Bourguet &amp; Guillemaud, <span>2016</span>). Additionally, pesticides are not always cheap, increasing the economic burden on farmers and consumers alike (Bourguet &amp; Guillemaud, <span>2016</span>). As a result, alternative strategies are needed to control major crop pests whose damage affects yield and crop quality. A key component of integrated pest management (IPM) is the identification of extant crop varieties carrying resistance phenotypes against pest insects (Stenberg, <span>2017</span>), in particular, the identification of varieties or lines that emit deterrent volatile organic compounds (VOCs), which can stop pest insects at the source by preventing physical contact, oviposition, and feeding on vulnerable crops. However, rather than killing the insects once a plant is infested, or in the early stages of infestation, why not just keep the insects from infesting in the first place? An exciting study by Ghosh <i>et al</i>., published in this issue of <i>New Phytologist</i> (<span>2023</span>, 1259–1274) identifies a variety of eggplant (aubergine/brinjal) (<i>Solanum melongena</i> L., Solanaceae) resistant to the eggplant/brinjal shoot and fruit borer (<i>Lucinodes orbonalis</i> Guenée, Lepidoptera: Pyralidae), which infests both the vegetative and fruit tissues of the plant (Fig. 1).</p><p>This eggplant variety, which originates in the eastern Himalaya region, shows nearly complete resistance to infestation by the adult moth of <i>L. orbonalis</i>, with a complete lack of infested fruits and shoots, and very limited presence of moth eggs on the leaves of the plant – the moth's usual oviposition site. The identification of a naturally resistant variety of eggplant is exciting news, as the pest moth is found world-wide and can cause the loss of 45–100% of marketable fruit (Reshma <i>et al</i>., <span>2019</span>). As a result of this heavy infestation and loss potential, eggplant receives some of the heaviest pesticide burdens of any cultivated species, with plants sprayed up to 20 times per month in some locations (Del Prado-Lu, <span>2015</span>). The presence of these pesticides affects not only the moths, but also potentially beneficial insects such as pollinators and parasitoid wasps. Eggplant is largely self-pollinated but benefits from pollination for seed set and fruit production (Pess","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"915-917"},"PeriodicalIF":9.4,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19172","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信