New Phytologist最新文献

筛选
英文 中文
World-wide impacts of climate change and nitrogen deposition on vegetation structure, composition, and functioning of shrublands. 全球气候变化和氮沉降对灌丛植被结构、组成和功能的影响
IF 9.4 1区 生物学
New Phytologist Pub Date : 2025-05-28 DOI: 10.1111/nph.70235
Daijun Liu, Chao Zhang, Romà Ogaya, Nezha Acil, Thomas A M Pugh, Xavier Domene, Xiwen Zhang, Yunting Fang, Xiaohong Yang, Franz Essl, Stefan Dullinger, Josep Peñuelas
{"title":"World-wide impacts of climate change and nitrogen deposition on vegetation structure, composition, and functioning of shrublands.","authors":"Daijun Liu, Chao Zhang, Romà Ogaya, Nezha Acil, Thomas A M Pugh, Xavier Domene, Xiwen Zhang, Yunting Fang, Xiaohong Yang, Franz Essl, Stefan Dullinger, Josep Peñuelas","doi":"10.1111/nph.70235","DOIUrl":"https://doi.org/10.1111/nph.70235","url":null,"abstract":"<p><p>Environmental changes and their effects are among the most pressing topics of today's ecological research. Shrublands, although widespread across the globe, remain understudied in this respect. We conducted a global meta-analysis of 81 shrubland sites subjected to experimental warming, shifts in precipitation (e.g. increased precipitation and drought), and nitrogen addition to quantify seven types of vegetation responses, including density and cover, species diversity, shrub proportion, and ecosystem functions. Our results indicated that the magnitude of responses varied depending on the vegetation metrics and treatment conditions. Specifically, aboveground biomass (AGB) was most sensitive to warming, increased precipitation, and nitrogen addition, while density was most responsive to drought treatment. Short-term treatments (1-5 yr) generally elicited stronger responses than long-term ones (> 5 yr), particularly under drought. High sensitivity to changes in climate and nitrogen addition was observed at extremely arid sites (aridity index < 0.2), and water availability strongly mediated sensitivity variation. Surprisingly, many vegetation metrics revealed no association between sensitivity variability and site water availability. Our research offers a global perspective on shrubland vegetation responses to environmental changes, highlighting the importance of water availability in sustaining shrubland biodiversity and functioning under future conditions.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144163199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How the diversity in digestion in carnivorous plants may have evolved. 食肉植物消化系统的多样性是如何进化的。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2025-05-28 DOI: 10.1111/nph.70229
Andrej Pavlovič
{"title":"How the diversity in digestion in carnivorous plants may have evolved.","authors":"Andrej Pavlovič","doi":"10.1111/nph.70229","DOIUrl":"https://doi.org/10.1111/nph.70229","url":null,"abstract":"<p><p>Carnivorous plants secrete digestive enzymes for prey degradation. Although carnivorous plants have a polyphyletic origin and evolved several times independently, they surprisingly co-opted similar digestive enzymes during convergent evolution. However, despite having similar digestive enzymes, the mode of their regulation strongly differs across different phylogenetic lineages. But what factors are responsible for such diversity in their digestion? By combining phylogenetic relationships of digestive fluid proteins and biochemical data, the analyses showed that phylogeny seems to be a significant factor determining the regulation of digestion, but environment (water vs terrestrial) and type of trap do not affect regulation. The oldest carnivorous plant lineage, Caryophyllales, co-opted phytohormone jasmonic acid (JA) for regulation of digestive enzyme activity. However, the remaining orders of carnivorous plants do not accumulate JA in response to prey capture, and their digestive enzyme activity is not responsive to exogenous JA application. Instead, they use different modes of regulation, for example, development/senescence, osmotically induced and constitutive. These different modes of regulation can be explained by co-option, albeit of similar genes but different paralogs with different cis regulatory elements that have been fine-tuned during evolution.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144163195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Agrobacterium-mediated base editing approach generates transgene-free edited banana. 农杆菌介导的碱基编辑方法产生无转基因编辑香蕉。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2025-04-01 DOI: 10.1111/nph.70044
Senne Van den Broeck, Yvan Ngapout, Bart Panis, Hervé Vanderschuren
{"title":"An Agrobacterium-mediated base editing approach generates transgene-free edited banana.","authors":"Senne Van den Broeck, Yvan Ngapout, Bart Panis, Hervé Vanderschuren","doi":"10.1111/nph.70044","DOIUrl":"https://doi.org/10.1111/nph.70044","url":null,"abstract":"<p><p>Genome editing for the development of improved varieties is supported by the possibility of segregating out the editor T-DNA cassette after genome editing in many crop species. Removal of the T-DNA cassette prevents potential continuous editing activity in the transformed plant and furthermore facilitates regulatory approval. While transgene outcrossing of exogenous sequences is possible for many crops, this is not the case for vegetatively propagated and sterile crops, such as Cavendish bananas. Therefore, gene editing techniques leading to transgene-free edited plants are essential to untap the potential of genome editing for those crops. Here, we present a method for transgene-free gene editing in sterile banana (Musa spp.) through a co-editing strategy. A novel Agrobacterium tumefaciens-mediated transgene-free gene editing approach combining embryogenesis and chlorsulfuron selection was established in sterile banana and validated through whole genome sequencing. Editing of the acetolactate synthase (MaALS) genes in banana using a plant base editor allows effective selection of edited plants. Moreover, transgene-free plantlets were regenerated with mutations at two target sites, indicating that the strategy can be used to target multiple genomic sites. The presented method allows for efficient transgene-free gene editing and represents the first report of a co-editing strategy in sterile crop species.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143765452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Off-target drift of the herbicide dicamba disrupts plant-pollinator interactions via novel pathways. 除草剂麦草畏的脱靶漂移通过新的途径破坏了植物与传粉者的相互作用。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2025-01-31 DOI: 10.1111/nph.20438
Regina S Baucom, Veronica Iriart, Anah Soble, Matthew R Armstrong, Tia-Lynn Ashman
{"title":"Off-target drift of the herbicide dicamba disrupts plant-pollinator interactions via novel pathways.","authors":"Regina S Baucom, Veronica Iriart, Anah Soble, Matthew R Armstrong, Tia-Lynn Ashman","doi":"10.1111/nph.20438","DOIUrl":"10.1111/nph.20438","url":null,"abstract":"<p><p>While herbicide use in agriculture is expected to have many effects on surrounding weed communities, it is largely unknown how plant exposure to sublethal doses of herbicide may subsequently impact plant-pollinator interactions. We tested the hypothesis that sublethal herbicide exposure indirectly alters plant-pollinator interactions through changes in plant traits, and specifically through alterations in floral display. Using a common garden experiment, we exposed 11 weed species to the herbicide dicamba and examined the potential for changes in pollinator abundance and patterns of pollinator visitation as well as alterations to plant traits. We found variation among plant species in the extent of damage from dicamba drift, and variation in size, flowering time, and flower displays, with some plant species showing negative impacts and others showing little effect. Pollinator frequencies were reduced in dicamba-exposed plots, and pollinator visits were reduced for some weed species yet not for others. Structural equation modeling revealed that the relationship between flower display and pollinator visits was disrupted in the presence of dicamba. Our study provides the most comprehensive picture to date of the impacts of herbicide drift on plant-pollinator interactions, with findings that highlight an underappreciated role of services supplied by weedy communities.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex consequences of disturbance on canopy plant communities of world forests: a review and synthesis 干扰对世界森林冠层植物群落的复杂影响:综述和综合。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-10-10 DOI: 10.1111/nph.19245
Nalini M. Nadkarni
{"title":"Complex consequences of disturbance on canopy plant communities of world forests: a review and synthesis","authors":"Nalini M. Nadkarni","doi":"10.1111/nph.19245","DOIUrl":"10.1111/nph.19245","url":null,"abstract":"<p>Epiphytes and their associated biota are increasingly recognized as contributing to biodiversity and to filling critical ecosystem functions in world forests. However, the attributes that have made them successful in canopy environments also make them vulnerable to natural and human-induced disturbances. Drawing upon ecological frameworks to understand disturbance, I categorized and synthesized the drivers and the consequences of disturbances on epiphytic materials. Across all impacts, disturbance agents were significantly more likely to lead to negative, rather than positive, effects in both tropical and temperate locales. Significantly more studies reported negative effects on abundance, diversity, community composition and connectivity, but some studies showed that disturbances enhanced these attributes. Although particular disturbance agents did not differently influence individual consequences, they explained a significant portion of variation in aggregated totals. Surprisingly, relative to human disturbances, natural disturbances were more likely to lead to negative effects. Many studies provided recommendations for effective societal responses to mitigate negative impacts, such as retaining large, old trees in forestry operations, patch-clearing for epiphyte harvest, maximizing forest fragment size, using epiphytes as bioindicators of disturbance, and applying principles of community forestry to land management. Future actions should also include communication of these results to policymakers and land managers.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 4","pages":"1366-1380"},"PeriodicalIF":9.4,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19245","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41216833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tackling redundancy: genetic mechanisms underlying paralog compensation in plants 处理冗余:植物同源补偿的遗传机制。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-09-19 DOI: 10.1111/nph.19267
Sessen Daniel Iohannes, David Jackson
{"title":"Tackling redundancy: genetic mechanisms underlying paralog compensation in plants","authors":"Sessen Daniel Iohannes,&nbsp;David Jackson","doi":"10.1111/nph.19267","DOIUrl":"10.1111/nph.19267","url":null,"abstract":"<div>\u0000 \u0000 <p>Gene duplication is a powerful source of biological innovation giving rise to paralogous genes that undergo diverse fates. Redundancy between paralogous genes is an intriguing outcome of duplicate gene evolution, and its maintenance over evolutionary time has long been considered a paradox. Redundancy can also be dubbed ‘a geneticist's nightmare’: It hinders the predictability of genome editing outcomes and limits our ability to link genotypes to phenotypes. Genetic studies in yeast and plants have suggested that the ability of ancient redundant duplicates to compensate for dosage perturbations resulting from a loss of function depends on the reprogramming of gene expression, a phenomenon known as active compensation. Starting from considerations on the stoichiometric constraints that drive the evolutionary stability of redundancy, this review aims to provide insights into the mechanisms of active compensation between duplicates that could be targeted for breaking paralog dependencies – the next frontier in plant functional studies.</p>\u0000 </div>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 4","pages":"1381-1389"},"PeriodicalIF":9.4,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41148514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deductive automated pollen classification in environmental samples via exploratory deep learning and imaging flow cytometry 通过探索性深度学习和成像流式细胞术对环境样本中的花粉进行演绎式自动分类
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-09-07 DOI: 10.1111/nph.19186
Claire M. Barnes, Ann L. Power, Daniel G. Barber, Richard K. Tennant, Richard T. Jones, G. Rob Lee, Jackie Hatton, Angela Elliott, Joana Zaragoza-Castells, Stephen M. Haley, Huw D. Summers, Minh Doan, Anne E. Carpenter, Paul Rees, John Love
{"title":"Deductive automated pollen classification in environmental samples via exploratory deep learning and imaging flow cytometry","authors":"Claire M. Barnes,&nbsp;Ann L. Power,&nbsp;Daniel G. Barber,&nbsp;Richard K. Tennant,&nbsp;Richard T. Jones,&nbsp;G. Rob Lee,&nbsp;Jackie Hatton,&nbsp;Angela Elliott,&nbsp;Joana Zaragoza-Castells,&nbsp;Stephen M. Haley,&nbsp;Huw D. Summers,&nbsp;Minh Doan,&nbsp;Anne E. Carpenter,&nbsp;Paul Rees,&nbsp;John Love","doi":"10.1111/nph.19186","DOIUrl":"https://doi.org/10.1111/nph.19186","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"1305-1326"},"PeriodicalIF":9.4,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conservation of beneficial microbes between the rhizosphere and the cyanosphere 根际和蓝层之间有益微生物的保护
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-09-05 DOI: 10.1111/nph.19225
Qing Zheng, Yuntao Hu, Suzanne M. Kosina, Marc W. Van Goethem, Susannah G. Tringe, Benjamin P. Bowen, Trent R. Northen
{"title":"Conservation of beneficial microbes between the rhizosphere and the cyanosphere","authors":"Qing Zheng,&nbsp;Yuntao Hu,&nbsp;Suzanne M. Kosina,&nbsp;Marc W. Van Goethem,&nbsp;Susannah G. Tringe,&nbsp;Benjamin P. Bowen,&nbsp;Trent R. Northen","doi":"10.1111/nph.19225","DOIUrl":"https://doi.org/10.1111/nph.19225","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"1246-1258"},"PeriodicalIF":9.4,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19225","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thinking outside the F-box: how UFO controls angiosperm development F盒子之外的思考:不明飞行物如何控制被子植物的发育
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-09-04 DOI: 10.1111/nph.19234
Philippe Rieu, Mo?ra Arnoux-Courseaux, Gabrielle Tichtinsky, Fran?ois Parcy
{"title":"Thinking outside the F-box: how UFO controls angiosperm development","authors":"Philippe Rieu,&nbsp;Mo?ra Arnoux-Courseaux,&nbsp;Gabrielle Tichtinsky,&nbsp;Fran?ois Parcy","doi":"10.1111/nph.19234","DOIUrl":"https://doi.org/10.1111/nph.19234","url":null,"abstract":"<p>The formation of inflorescences and flowers is essential for the successful reproduction of angiosperms. In the past few decades, genetic studies have identified the LEAFY transcription factor and the UNUSUAL FLORAL ORGANS (UFO) F-box protein as two major regulators of flower development in a broad range of angiosperm species. Recent research has revealed that UFO acts as a transcriptional cofactor, redirecting the LEAFY floral regulator to novel <i>cis</i>-elements. In this review, we summarize the various roles of UFO across species, analyze past results in light of new discoveries and highlight the key questions that remain to be solved.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"945-959"},"PeriodicalIF":9.4,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19234","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
MicroRNA 4407 modulates nodulation in soybean by repressing a root-specific ISOPENTENYLTRANSFERASE (GmIPT3) MicroRNA 4407通过抑制根特异性异戊基转移酶(GmIPT3)调节大豆结瘤
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-08-31 DOI: 10.1111/nph.19222
Kejing Fan, Zhili Wang, Ching-Ching Sze, Yongchao Niu, Fuk-Ling Wong, Man-Wah Li, Hon-Ming Lam
{"title":"MicroRNA 4407 modulates nodulation in soybean by repressing a root-specific ISOPENTENYLTRANSFERASE (GmIPT3)","authors":"Kejing Fan,&nbsp;Zhili Wang,&nbsp;Ching-Ching Sze,&nbsp;Yongchao Niu,&nbsp;Fuk-Ling Wong,&nbsp;Man-Wah Li,&nbsp;Hon-Ming Lam","doi":"10.1111/nph.19222","DOIUrl":"https://doi.org/10.1111/nph.19222","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"1034-1051"},"PeriodicalIF":9.4,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19222","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信