New Phytologist最新文献

筛选
英文 中文
Unraveling the in planta population dynamics of the plant pathogen Ralstonia pseudosolanacearum by mathematical modeling. 通过数学建模揭示植物病原体 Ralstonia pseudosolanacearum 在植物体内的种群动态。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-11-04 DOI: 10.1111/nph.20216
Caroline Baroukh, Léo Gerlin, Antoine Escourrou, Stéphane Genin
{"title":"Unraveling the in planta population dynamics of the plant pathogen Ralstonia pseudosolanacearum by mathematical modeling.","authors":"Caroline Baroukh, Léo Gerlin, Antoine Escourrou, Stéphane Genin","doi":"10.1111/nph.20216","DOIUrl":"https://doi.org/10.1111/nph.20216","url":null,"abstract":"<p><p>Ralstonia pseudosolanacearum, a plant pathogen responsible for bacterial wilt in numerous plant species, exhibits paradoxical growth in the host by achieving high bacterial densities in xylem sap, an environment traditionally considered nutrient-poor. This study combined in vitro experiments and mathematical modeling to elucidate the population dynamics of R. pseudosolanacearum within plants. To simulate the xylem environment, a tomato xylem-mimicking medium was developed. Then, a mathematical model was constructed using in vitro data and employed to simulate the dynamics of bacterial density and xylem sap composition during plant infection. The model accurately reproduced in planta experimental observations, including high bacterial densities and the depletion of glutamine and asparagine. Additionally, the model estimated the minimal number of bacteria required to initiate infection, the timing of infection post-inoculation, the bacterial mortality rate within the plant and the rate at which bacterial putrescine is assimilated by the plant. The findings demonstrate that xylem sap can sustain high bacterial densities, provides an explanatory framework for the presence of acetate, putrescine and 3-hydroxybutyrate in the sap of infected xylem and give clues as to the role of putrescine in the virulence of R. pseudosolanacearum.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The endosomal-vacuolar transport system acts as a docking platform for the Pmk1 MAP kinase signaling pathway in Magnaporthe oryzae. 内体-空泡转运系统是木格鲁氏杆菌中 Pmk1 MAP 激酶信号通路的对接平台。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-11-04 DOI: 10.1111/nph.20235
Qing Wang, Jing Wang, Zhicheng Huang, Yan Li, Hui Li, Pengyun Huang, Yingying Cai, Jiaoyu Wang, Xiaohong Liu, Fu-Cheng Lin, Jianping Lu
{"title":"The endosomal-vacuolar transport system acts as a docking platform for the Pmk1 MAP kinase signaling pathway in Magnaporthe oryzae.","authors":"Qing Wang, Jing Wang, Zhicheng Huang, Yan Li, Hui Li, Pengyun Huang, Yingying Cai, Jiaoyu Wang, Xiaohong Liu, Fu-Cheng Lin, Jianping Lu","doi":"10.1111/nph.20235","DOIUrl":"https://doi.org/10.1111/nph.20235","url":null,"abstract":"<p><p>In Magnaporthe oryzae, the Pmk1 MAP kinase signaling pathway regulates appressorium formation, plant penetration, effector secretion, and invasive growth. While the Mst11-Mst7-Pmk1 cascade was characterized two decades ago, knowledge of its signaling in the intracellular network remains limited. In this study, we demonstrate that the endosomal surface scaffolds Pmk1 MAPK signaling and Msb2 activates Ras2 on endosomes in M. oryzae. Protein colocalization demonstrated that Msb2, Ras2, Cap1, Mst50, Mst11, Mst7, and Pmk1 attach to late endosomal membranes. Damage to the endosome-vacuole transport system influences Pmk1 phosphorylation. When Msb2 senses a plant signal, it internalizes and activates Ras2 on endosome membrane surfaces, transmitting the signal to Pmk1 via Mst11 and Mst7. Signal-sensing and delivery proteins are ubiquitinated and sorted for degradation in late endosomes and vacuoles, terminating signaling. Plant penetration and lowered intracellular turgor are required for the transition from late endosomes to vacuoles in appressoria. Our findings uncover an effective mechanism that scaffolds and controls Pmk1 MAPK signaling through endosomal-vacuolar transport, offering new knowledge for the cytological and molecular mechanisms by which the Pmk1 MAPK pathway modulates development and pathogenicity in M. oryzae.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autophagy is essential for somatic embryogenesis in citrus through regulating amyloplast degradation and lipid homeostasis. 通过调节淀粉体降解和脂质平衡,自噬对柑橘的体细胞胚胎发生至关重要。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-11-04 DOI: 10.1111/nph.20242
Erlin Gao, Yunju Zhao, Mengxia Wu, Kun Wang, Qiwei Zheng, Yanlong Li, Xiaolu Qu, Xiaomeng Wu, Wenwu Guo, Pengwei Wang
{"title":"Autophagy is essential for somatic embryogenesis in citrus through regulating amyloplast degradation and lipid homeostasis.","authors":"Erlin Gao, Yunju Zhao, Mengxia Wu, Kun Wang, Qiwei Zheng, Yanlong Li, Xiaolu Qu, Xiaomeng Wu, Wenwu Guo, Pengwei Wang","doi":"10.1111/nph.20242","DOIUrl":"https://doi.org/10.1111/nph.20242","url":null,"abstract":"<p><p>Autophagy is a conserved degradation pathway that regulates the clearance of paternal substrate at the early embryogenesis stage of animals. However, its mode of action is likely different in plants, which can regenerate through apomixis without fertilisation. Somatic embryogenesis (SE) is a unique plant process widely used for plant propagation and germplasm utilisation. Here, we studied citrus as an example and found a higher autophagic activity after SE initiation. Interestingly, amyloplasts were frequently found inside autophagosomes, whereas the inhibition of autophagy blocks amyloplasts/starch degradation and hinders somatic embryo formation. Furthermore, the consumption of storage lipids was faster in autophagy mutants, suggesting lipid metabolism is activated when starch utilisation is blocked. Exogenous application of autophagy-inducing chemicals (e.g. spermidine) significantly promoted the formation of autophagosomes and increased SE efficiency, indicating a positive correlation between autophagy, energy metabolism, and somatic embryo formation in citrus. Taken together, our study unveils a pathway for the degradation of plant-specific organelles and provides an effective approach for plant propagation.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Arabidopsis E3 ubiquitin ligase DOA10A promotes localization of abscisic acid (ABA) receptors to the membrane through mono-ubiquitination in ABA signaling. 拟南芥 E3 泛素连接酶 DOA10A 在 ABA 信号转导过程中通过单泛素化促进脱落酸(ABA)受体定位到膜上。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-11-04 DOI: 10.1111/nph.20224
Cuixia Liu, Qingliang Li, Zhengwei Shen, Ran Xia, Qian Chen, Xiao Li, Yanglin Ding, Shuhua Yang, Giovanna Serino, Qi Xie, Feifei Yu
{"title":"The Arabidopsis E3 ubiquitin ligase DOA10A promotes localization of abscisic acid (ABA) receptors to the membrane through mono-ubiquitination in ABA signaling.","authors":"Cuixia Liu, Qingliang Li, Zhengwei Shen, Ran Xia, Qian Chen, Xiao Li, Yanglin Ding, Shuhua Yang, Giovanna Serino, Qi Xie, Feifei Yu","doi":"10.1111/nph.20224","DOIUrl":"https://doi.org/10.1111/nph.20224","url":null,"abstract":"<p><p>The endoplasmic reticulum-associated degradation (ERAD) system eliminates misfolded and short-lived proteins to maintain physiological homeostasis in the cell. We have previously reported that ERAD is involved in salt tolerance in Arabidopsis. Given the central role of the phytohormone abscisic acid (ABA) in plant stress responses, we sought to identify potential intersections between the ABA and the ERAD pathways in plant stress response. By screening for the ABA response of a wide array of ERAD mutants, we isolated a gain-of-function mutant, doa10a-1, which conferred ABA hypersensitivity to seedlings. Genetic and biochemical assays showed that DOA10A is a functional E3 ubiquitin ligase which, by acting in concert with specific E2 enzymes, mediates mono-ubiquitination of the ABA receptor, followed by their relocalization to the plasma membrane. This in turn leads to enhanced ABA perception. In summary, we report here the identification of a novel RING-type E3 ligase, DOA10A, which regulates ABA perception by affecting the localization and the activity of ABA receptors through their mono-ubiquitination.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A global overview of insect-fern interactions and its ecological trends. 昆虫与蕨类植物相互作用及其生态趋势的全球概览。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-11-03 DOI: 10.1111/nph.20229
Gabriela Fraga Porto, Diego V Anjos, Pedro Luna, Kleber Del-Claro
{"title":"A global overview of insect-fern interactions and its ecological trends.","authors":"Gabriela Fraga Porto, Diego V Anjos, Pedro Luna, Kleber Del-Claro","doi":"10.1111/nph.20229","DOIUrl":"https://doi.org/10.1111/nph.20229","url":null,"abstract":"<p><p>Historically, ferns have been described as underutilized by insects. However, studies have shown a diversity of insects interacting with ferns, although the evolutionary and ecological drivers of these interactions are still to be untangled. To fill these gaps, we compiled more than 100 yr of global data on insect-fern interactions from the literature comprising 374 fern and 649 insect species. With this database we assessed how fern trophic specialization, phylogenetic relationships and climate have shaped their interactions with insects. Our findings showed that interactions between ferns and insects can be explained by the phylogenetic relations among them. We observed that insect orders part of the Endopterygota clade tend to interact with similar fern species, which might be a result of the inheritance of Endopterygota ancestors probably due to phylogenetic niche conservationism. Under an ecological context, fern specialization increased with temperature, precipitation, and climatic stability. Our results show that climate might be one of the main factors explaining the spatial variation of insect-fern interactions, postulate also supported by the observed phylogenetic clustering of the studied ferns species. Our study highlights the intricate and multifaceted nature of insect-fern interactions, where evolutionary history and ecological factors converge to shape these relationships.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orchestrating ROS regulation: coordinated post-translational modification switches in NADPH oxidases. 协调 ROS 调节:NADPH 氧化酶中协调的翻译后修饰开关。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-10-29 DOI: 10.1111/nph.20231
Xinyu Zhang, Dingliang Zhang, Chenchen Zhong, Wenli Li, Savithramma P Dinesh-Kumar, Yongliang Zhang
{"title":"Orchestrating ROS regulation: coordinated post-translational modification switches in NADPH oxidases.","authors":"Xinyu Zhang, Dingliang Zhang, Chenchen Zhong, Wenli Li, Savithramma P Dinesh-Kumar, Yongliang Zhang","doi":"10.1111/nph.20231","DOIUrl":"https://doi.org/10.1111/nph.20231","url":null,"abstract":"<p><p>Reactive oxygen species (ROS) are among the most important signaling molecules, playing a significant role in plant growth, development, and responses to various environmental stresses. Respiratory burst oxidase homologs (RBOHs) are key enzymes in ROS production. Plants tightly regulate the activation and deactivation of RBOHs through various post-translational modifications (PTMs), including phosphorylation, ubiquitination, S-nitrosylation, and persulfidation. These PTMs fine-tune ROS production, ensuring normal plant growth and development while facilitating rapid responses to abiotic and biotic stresses. This review discusses the effects of different PTMs on RBOH function and their biological relevance. Additionally, we examine the evolutionary conservation of PTM sites and emphasize the complex interplay between multiple PTMs regulating RBOHs.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover crop rotation suppresses root-knot nematode infection by shaping soil microbiota. 覆盖作物轮作通过塑造土壤微生物群来抑制根结线虫感染。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-10-29 DOI: 10.1111/nph.20220
Hualiang Zhang, Dongsheng Guo, Yuting Lei, Jose L Lozano-Torres, Ye Deng, Jianming Xu, Lingfei Hu
{"title":"Cover crop rotation suppresses root-knot nematode infection by shaping soil microbiota.","authors":"Hualiang Zhang, Dongsheng Guo, Yuting Lei, Jose L Lozano-Torres, Ye Deng, Jianming Xu, Lingfei Hu","doi":"10.1111/nph.20220","DOIUrl":"https://doi.org/10.1111/nph.20220","url":null,"abstract":"<p><p>Cover crop integration into grain crop rotations is a promising strategy for mitigating nematode-induced diseases in agriculture. However, the precise mechanisms underlying this phenomenon remain elusive. Here, we first assessed the impact of five commonly used cover crops on the suppression of rice root-knot nematodes (RKNs). We then chose ryegrass as a model to explore the mechanistic basis of the suppression effect. Contrary to expectations, while ryegrass rotation significantly enhances soil fertility, this increased fertility has minimal impact on RKN suppression. Furthermore, neither integrated ryegrass residues nor root exudates exhibit direct toxicity towards RKNs. We demonstrated that ryegrass rotation primarily suppresses RKNs by enriching beneficial soil microbiota. By complementing with isolated bacteria strains, we further demonstrated that ryegrass-enriched bacteria not only directly reduce RKN infectivity and preference, but also activate plant immunity via the OsLRR-RLK-MAPK-WRKY-JA cascade, thereby diminishing RKN infection. Our study highlights the crucial role of soil microbiota in plant-nematode interactions, challenging conventional views on the direct effects of cover crops in nematode suppression. It offers a mechanistic understanding of the regulation potential and action modes of cover crops in mitigating nematode diseases, providing valuable insights for sustainable agriculture.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorylation of phyB by GSK3s, a key mechanism that brings temperature sensors together. GSK3s 磷酸化 phyB,这是温度传感器结合在一起的关键机制。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-10-28 DOI: 10.1111/nph.20232
Chloe Zubieta, Stephanie Hutin, Jae-Hoon Jung, Xuelei Lai
{"title":"Phosphorylation of phyB by GSK3s, a key mechanism that brings temperature sensors together.","authors":"Chloe Zubieta, Stephanie Hutin, Jae-Hoon Jung, Xuelei Lai","doi":"10.1111/nph.20232","DOIUrl":"https://doi.org/10.1111/nph.20232","url":null,"abstract":"","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 23-million-year record of morphological evolution within Neotropical grass pollen. 新热带禾本科花粉形态演变的 2300 万年记录。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-10-27 DOI: 10.1111/nph.20214
Caixia Wei, Mao Li, Limi Mao, Luke Mander, Phillip E Jardine, William D Gosling, Carina Hoorn
{"title":"A 23-million-year record of morphological evolution within Neotropical grass pollen.","authors":"Caixia Wei, Mao Li, Limi Mao, Luke Mander, Phillip E Jardine, William D Gosling, Carina Hoorn","doi":"10.1111/nph.20214","DOIUrl":"https://doi.org/10.1111/nph.20214","url":null,"abstract":"<p><p>Grass-dominated biomes in South America comprise c. 20 million years of history, yet their evolution and underlying drivers remain poorly understood. Here we apply a novel approach that combines scanning electron microscopy imaging with computational analysis to quantify the morphometrics of grass (Poaceae) pollen micro-ornamentation from the Neotropics since the Early Miocene (23 million years ago). Three spatial-temporal pollen sets were assembled to further elucidate the variation and evolutionary traits of grasses through space and time. Our results reveals that three spatial-temporal pollen groups occupy unique, partially overlapping regions of their exine morphospace. The direction of this shift is consistent over time, progressing towards less dense ornamentation. Interestingly, the extent of the occupied morphospace did not vary significantly. This is the first time that the true morphological variation in Poaceae pollen micro-ornamentation becomes apparent through time. We hypothesize that changes in grass pollen exine since the Early Miocene were driven by evolutionary processes (evolutionary drift and/or directional selection), and potentially migration at the continental scale. The high diversity in pollen micro-ornamentation is likely related to their evolutionary success in the Neogene.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
mRNA ADENOSINE METHYLASE promotes drought tolerance through N6-methyladenosine-dependent and independent impacts on mRNA regulation in Arabidopsis. 拟南芥 mRNA ADENOSINE METHYLASE 通过 N6-甲基腺苷对 mRNA 调控的依赖和独立影响促进抗旱性。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2024-10-27 DOI: 10.1111/nph.20227
Diep R Ganguly, Yongfang Li, Susheel Sagar Bhat, Shalini Tiwari, Pei Jia Ng, Brian D Gregory, Ramanjulu Sunkar
{"title":"mRNA ADENOSINE METHYLASE promotes drought tolerance through N<sup>6</sup>-methyladenosine-dependent and independent impacts on mRNA regulation in Arabidopsis.","authors":"Diep R Ganguly, Yongfang Li, Susheel Sagar Bhat, Shalini Tiwari, Pei Jia Ng, Brian D Gregory, Ramanjulu Sunkar","doi":"10.1111/nph.20227","DOIUrl":"https://doi.org/10.1111/nph.20227","url":null,"abstract":"<p><p>Among many mRNA modifications, adenine methylation at the N<sup>6</sup> position (N<sup>6</sup>-methyladenosine, m<sup>6</sup>A) is known to affect mRNA biology extensively. The influence of m<sup>6</sup>A has yet to be assessed under drought, one of the most impactful abiotic stresses. We show that Arabidopsis thaliana (L.) Heynh. (Arabidopsis) plants lacking mRNA ADENOSINE METHYLASE (MTA) are drought-sensitive. Subsequently, we comprehensively assess the impacts of MTA-dependent m<sup>6</sup>A changes during drought on mRNA abundance, stability, and translation in Arabidopsis. During drought, there is a global trend toward hypermethylation of many protein-coding transcripts that does not occur in mta. We also observe complex regulation of m<sup>6</sup>A at a transcript-specific level, possibly reflecting compensation by other m<sup>6</sup>A components. Importantly, a subset of transcripts that are hypermethylated in an MTA-dependent manner exhibited reduced turnover and translation in mta, compared with wild-type (WT) plants, during drought. Additionally, MTA impacts transcript stability and translation independently of m<sup>6</sup>A. We also correlate drought-associated deposition of m<sup>6</sup>A with increased translation of modulators of drought response, such as RD29A, COR47, COR413, ALDH2B, ERD7, and ABF4 in WT, which is impaired in mta. m<sup>6</sup>A is dynamic during drought and, alongside MTA, promotes tolerance by regulating drought-responsive changes in transcript turnover and translation.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信