New Phytologist最新文献

筛选
英文 中文
Stripe rust effector Pst9653 interferes with subcellular distributions of catalase TaCAT3 to facilitate susceptibility-involved ROS scavenging in wheat. 小麦条锈病效应因子Pst9653干扰过氧化氢酶TaCAT3的亚细胞分布,促进敏感性相关的ROS清除。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2025-07-03 DOI: 10.1111/nph.70341
Xiaobo Wei, Nian Liu, Weiling Yang, Wenjie Hou, Yuanfei Hou, Zhensheng Kang, Jie Liu
{"title":"Stripe rust effector Pst9653 interferes with subcellular distributions of catalase TaCAT3 to facilitate susceptibility-involved ROS scavenging in wheat.","authors":"Xiaobo Wei, Nian Liu, Weiling Yang, Wenjie Hou, Yuanfei Hou, Zhensheng Kang, Jie Liu","doi":"10.1111/nph.70341","DOIUrl":"https://doi.org/10.1111/nph.70341","url":null,"abstract":"<p><p>Plants resist pathogen invasion by triggering reactive oxygen species (ROS) burst. However, the molecular mechanism by which pathogens suppress ROS accumulation for successful infection remains to be elucidated. To address this concern, an effector protein Pst9653 from Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust, was characterized. The function of Pst9653 during Pst infection was identified by RNA interference and overexpression in wheat. The interaction targets of Pst9653 were screened by yeast two-hybrid assays and further regulatory mode was also determined. The results showed that Pst9653, encoding a virulence effector, was significantly upregulated during Pst infection. Silencing of Pst9653 led to increased wheat resistance to stripe rust and restricted fungal development, whereas overexpressing Pst9653 greatly promoted Pst susceptibility in wheat. In addition, Pst9653 was shown to interact with wheat catalases TaCAT1 and TaCAT3. TaCAT3 was induced by Pst and negatively regulated wheat resistance to stripe rust. Co-expression of TaCAT3 and Pst9653 facilitates cytoplasmic enrichment of TaCAT3 in plants. Our findings reveal that Pst9653 is secreted and disrupts TaCAT3 import into peroxisomes to promote susceptibility-involved ROS scavenging in wheat. This study uncovers a novel regulation strategy to cope with excessive ROS accumulation under stress conditions.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144561607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
U-box E3 ubiquitin ligase OsPUB41 represses rice blast resistance by promoting degradation of OsPALs. U-box E3泛素连接酶OsPUB41通过促进OsPALs降解抑制水稻稻瘟病抗性。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2025-07-03 DOI: 10.1111/nph.70354
Li Xu, Yongyan Tang, Mei Wang, Xuan Peng, Hui Shi, Zhenyu Zhang, Yanling Zhang, Junjie Yin, Qing Xiong, Xiang Lu, Yang Zhou, Xuewei Chen, Jing Wang
{"title":"U-box E3 ubiquitin ligase OsPUB41 represses rice blast resistance by promoting degradation of OsPALs.","authors":"Li Xu, Yongyan Tang, Mei Wang, Xuan Peng, Hui Shi, Zhenyu Zhang, Yanling Zhang, Junjie Yin, Qing Xiong, Xiang Lu, Yang Zhou, Xuewei Chen, Jing Wang","doi":"10.1111/nph.70354","DOIUrl":"https://doi.org/10.1111/nph.70354","url":null,"abstract":"<p><p>Plant U-box (PUB) proteins, the smallest E3 ubiquitin ligase subfamily, play key roles in plant growth, development, and responses to biotic/abiotic stresses. However, their functions in rice immunity remain largely unexplored. Here, we identified Oryza sativa plant U-box 41 (OsPUB41) as a blast-induced PUB gene via transcriptome analysis and quantitative polymerase chain reaction detection. And the role of OsPUB41 in blast resistance was investigated using both OsPUB41 knockout and over-expression transgenic plants. OsPUB41 functions as an active E3 ligase, promoting the degradation of Oryza sativa phenylalanine ammonia-lyase 1 (OsPAL1) and its homologous proteins, which are key enzymes in lignin biosynthesis, via the ubiquitin-proteasome system. Knocking out OsPUB41 elevated OsPALs protein levels, increased lignin accumulation, and strengthened cell walls, thereby limiting Magnaporthe oryzae invasion. Consequently, OsPUB41 knockout enhanced resistance to rice blast without yield penalty, whereas OsPUB41 over-expression reduced resistance to rice blast. Our study uncovers a novel PUB-mediated immune mechanism in rice and proposesOsPUB41 as a potential target for (CRISPR/Cas9)-mediated genome editing, which may facilitate the development of blast-resistant rice without compromising agronomic traits.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144561608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two plasmid-borne virulence genomic islands of Clavibacter michiganensis are genetically diverse and determine the development of wilt symptoms in host plants. 两个质粒携带的密歇根克拉维杆菌毒力基因组岛具有遗传多样性,并决定了宿主植物枯萎症状的发展。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2025-06-27 DOI: 10.1111/nph.70329
In Sun Hwang, Thuong Thi Nguyen, Eom-Ji Oh, Geonhui Cho, Jea Hyeoung Kim, Ki-Tae Kim, Yong-Hwan Lee, You-Kyoung Han, Chang-Sik Oh
{"title":"Two plasmid-borne virulence genomic islands of Clavibacter michiganensis are genetically diverse and determine the development of wilt symptoms in host plants.","authors":"In Sun Hwang, Thuong Thi Nguyen, Eom-Ji Oh, Geonhui Cho, Jea Hyeoung Kim, Ki-Tae Kim, Yong-Hwan Lee, You-Kyoung Han, Chang-Sik Oh","doi":"10.1111/nph.70329","DOIUrl":"https://doi.org/10.1111/nph.70329","url":null,"abstract":"<p><p>Plasmids contribute to the efficient adaptation of bacteria to specific niches in nature. The gram-positive bacterium Clavibacter michiganensis carries two plasmid-borne important virulence genes, celA and pat-1, necessary for wilting in tomato. The 88 C. michiganensis field isolates collected between 2011 and 2020 were examined for phenotypic variation, including virulence in host plants. Four isolates lacking plasmids with celA, pat-1, or both failed to cause wilting, and nine isolates, including these four, failed to cause wilting in Nicotiana benthamiana. Whole genome analyses revealed 11 distinct plasmid types, including 9 newly identified, and 10 bacterial groups with different plasmid compositions, despite having almost identical chromosomes. Comparative genomic analyses revealed significant genetic diversity among the plasmids, while three plasmids containing the genomic island (GI) α with celA or GIβ with pat-1 and three newly identified plasmids carrying both islands shared large blocks of synteny. In addition, GIα is closely associated with mobile genetic elements, suggesting the genetic rearrangement or transfer at this locus. These results suggest that C. michiganensis harbors a wide variety of virulence and nonvirulence plasmids, and that there is genetic rearrangement among plasmids in GI regions, determining bacterial virulence in plants.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144508923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blue light-induced stomatal opening is associated with species-specific changes in primary metabolism but not with starch breakdown in guard cells. 蓝光诱导的气孔打开与物种特异性的初级代谢变化有关,而与保护细胞的淀粉分解无关。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2025-06-11 DOI: 10.1111/nph.70257
Humaira Bahadar, Eva Gomes Morais, Francisco Bruno S Freire, Valéria F Lima, Marina Ellen Giacomelli, Leticia Dos Anjos, Werner Camargos Antunes, Danilo M Daloso
{"title":"Blue light-induced stomatal opening is associated with species-specific changes in primary metabolism but not with starch breakdown in guard cells.","authors":"Humaira Bahadar, Eva Gomes Morais, Francisco Bruno S Freire, Valéria F Lima, Marina Ellen Giacomelli, Leticia Dos Anjos, Werner Camargos Antunes, Danilo M Daloso","doi":"10.1111/nph.70257","DOIUrl":"https://doi.org/10.1111/nph.70257","url":null,"abstract":"<p><p>Blue light (BL)-induced stomatal opening has been associated with starch breakdown within Arabidopsis guard cells (GCs). However, whether this mechanism is conserved in angiosperms and which metabolic pathways are activated downstream of BL perception and/or starch degradation, remains unknown. Here, we performed stomatal and metabolomics analyses to investigate how BL stomatal responses are associated with GC starch and primary metabolisms in Arabidopsis, cowpea, and tobacco. The stomatal aperture increased, but no starch degradation was observed in all species under BL. Guard cell primary metabolism was altered by BL exposition in a species-specific and time-dependent manner. Sucrose was negatively correlated with stomatal aperture in both Arabidopsis and cowpea, resembling previous results during white light (WL)-induced stomatal opening. However, contrasting metabolic changes were observed in tobacco under BL and WL. For instance, malate and fumarate accumulated preferentially in tobacco GCs under BL and WL, respectively. Despite the species-specific BL metabolic responses, sugars were positively correlated with tricarboxylic acid cycle-related metabolites in all species under BL, similar to those previously observed under WL-induced stomatal opening. Our study highlights that both starch breakdown and the changes in primary metabolism within GCs triggered by light depend on the species, environmental condition, and/or light quality.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144276391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The onset of phenological plant response to climate warming. 植物物候对气候变暖的响应。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2025-06-10 DOI: 10.1111/nph.70268
Juli G Pausas
{"title":"The onset of phenological plant response to climate warming.","authors":"Juli G Pausas","doi":"10.1111/nph.70268","DOIUrl":"https://doi.org/10.1111/nph.70268","url":null,"abstract":"","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144267683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging data silos to holistically model plant macrophenology. 弥合数据孤岛,全面模拟植物宏观物候。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2025-06-06 DOI: 10.1111/nph.70249
Lizbeth G Amador, Tadeo H Ramirez-Parada, Isaac W Park, Susan J Mazer, Aaron M Ellison, Margaret O'Brien, Eric R Sokol, Colin A Smith, Charles C Davis, Sydne Record
{"title":"Bridging data silos to holistically model plant macrophenology.","authors":"Lizbeth G Amador, Tadeo H Ramirez-Parada, Isaac W Park, Susan J Mazer, Aaron M Ellison, Margaret O'Brien, Eric R Sokol, Colin A Smith, Charles C Davis, Sydne Record","doi":"10.1111/nph.70249","DOIUrl":"https://doi.org/10.1111/nph.70249","url":null,"abstract":"<p><p>Phenological response to global climate change can impact ecosystem functions. There are various data sources from which spatiotemporal and taxonomic phenological data may be obtained: mobilized herbaria, community science initiatives, observatory networks, and remote sensing. However, analyses conducted to date have generally relied on single sources of these data. Siloed treatment of data in analyses may be due to the lack of harmonization across different data sources that offer partially nonoverlapping information and are often complementary. Such treatment precludes a deeper understanding of phenological responses at varying macroecological scales. Here, we describe a detailed vision for the harmonization of phenological data, including the direct integration of disparate sources of phenological data using a common schema. Specifically, we highlight existing methods for data harmonization that can be applied to phenological data: data design patterns, metadata standards, and ontologies. We describe how harmonized data from multiple sources can be integrated into analyses using existing methods and discuss the use of automated extraction techniques. Data harmonization is not a new concept in ecology, but the harmonization of phenological data is overdue. We aim to highlight the need for better data harmonization, providing a roadmap for how harmonized phenological data may fill gaps while simultaneously being integrated into analyses.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144235696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring natural selection on the transcriptome. 测量转录组的自然选择。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2025-06-05 DOI: 10.1111/nph.70287
John R Stinchcombe, John K Kelly
{"title":"Measuring natural selection on the transcriptome.","authors":"John R Stinchcombe, John K Kelly","doi":"10.1111/nph.70287","DOIUrl":"https://doi.org/10.1111/nph.70287","url":null,"abstract":"<p><p>The level and pattern of gene expression is increasingly recognized as a principal determinant of plant phenotypes and thus of fitness. The estimation of natural selection on the transcriptome is an emerging research discipline. We here review recent progress and consider the challenges posed by the high dimensionality of the transcriptome for the multiple regression methods routinely used to characterize selection in field experiments. We consider several different methods, including classical multivariate statistical approaches, regularized regression, latent factor models, and machine learning, that address the fact that the number of traits potentially affecting fitness (each expressed gene) can greatly exceed the number of plants that researchers can reasonably monitor in a field study. While such studies are currently few, extant data are sufficient to illustrate several of these approaches. With additional methodological development coupled with applications to a broader range of species, we believe prospects are favorable for directly characterizing selection on gene expression within natural plant populations.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144235697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How the diversity in digestion in carnivorous plants may have evolved. 食肉植物消化系统的多样性是如何进化的。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2025-05-28 DOI: 10.1111/nph.70229
Andrej Pavlovič
{"title":"How the diversity in digestion in carnivorous plants may have evolved.","authors":"Andrej Pavlovič","doi":"10.1111/nph.70229","DOIUrl":"https://doi.org/10.1111/nph.70229","url":null,"abstract":"<p><p>Carnivorous plants secrete digestive enzymes for prey degradation. Although carnivorous plants have a polyphyletic origin and evolved several times independently, they surprisingly co-opted similar digestive enzymes during convergent evolution. However, despite having similar digestive enzymes, the mode of their regulation strongly differs across different phylogenetic lineages. But what factors are responsible for such diversity in their digestion? By combining phylogenetic relationships of digestive fluid proteins and biochemical data, the analyses showed that phylogeny seems to be a significant factor determining the regulation of digestion, but environment (water vs terrestrial) and type of trap do not affect regulation. The oldest carnivorous plant lineage, Caryophyllales, co-opted phytohormone jasmonic acid (JA) for regulation of digestive enzyme activity. However, the remaining orders of carnivorous plants do not accumulate JA in response to prey capture, and their digestive enzyme activity is not responsive to exogenous JA application. Instead, they use different modes of regulation, for example, development/senescence, osmotically induced and constitutive. These different modes of regulation can be explained by co-option, albeit of similar genes but different paralogs with different cis regulatory elements that have been fine-tuned during evolution.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144163195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex consequences of disturbance on canopy plant communities of world forests: a review and synthesis 干扰对世界森林冠层植物群落的复杂影响:综述和综合。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-10-10 DOI: 10.1111/nph.19245
Nalini M. Nadkarni
{"title":"Complex consequences of disturbance on canopy plant communities of world forests: a review and synthesis","authors":"Nalini M. Nadkarni","doi":"10.1111/nph.19245","DOIUrl":"10.1111/nph.19245","url":null,"abstract":"<p>Epiphytes and their associated biota are increasingly recognized as contributing to biodiversity and to filling critical ecosystem functions in world forests. However, the attributes that have made them successful in canopy environments also make them vulnerable to natural and human-induced disturbances. Drawing upon ecological frameworks to understand disturbance, I categorized and synthesized the drivers and the consequences of disturbances on epiphytic materials. Across all impacts, disturbance agents were significantly more likely to lead to negative, rather than positive, effects in both tropical and temperate locales. Significantly more studies reported negative effects on abundance, diversity, community composition and connectivity, but some studies showed that disturbances enhanced these attributes. Although particular disturbance agents did not differently influence individual consequences, they explained a significant portion of variation in aggregated totals. Surprisingly, relative to human disturbances, natural disturbances were more likely to lead to negative effects. Many studies provided recommendations for effective societal responses to mitigate negative impacts, such as retaining large, old trees in forestry operations, patch-clearing for epiphyte harvest, maximizing forest fragment size, using epiphytes as bioindicators of disturbance, and applying principles of community forestry to land management. Future actions should also include communication of these results to policymakers and land managers.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 4","pages":"1366-1380"},"PeriodicalIF":9.4,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19245","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41216833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tackling redundancy: genetic mechanisms underlying paralog compensation in plants 处理冗余:植物同源补偿的遗传机制。
IF 9.4 1区 生物学
New Phytologist Pub Date : 2023-09-19 DOI: 10.1111/nph.19267
Sessen Daniel Iohannes, David Jackson
{"title":"Tackling redundancy: genetic mechanisms underlying paralog compensation in plants","authors":"Sessen Daniel Iohannes,&nbsp;David Jackson","doi":"10.1111/nph.19267","DOIUrl":"10.1111/nph.19267","url":null,"abstract":"<div>\u0000 \u0000 <p>Gene duplication is a powerful source of biological innovation giving rise to paralogous genes that undergo diverse fates. Redundancy between paralogous genes is an intriguing outcome of duplicate gene evolution, and its maintenance over evolutionary time has long been considered a paradox. Redundancy can also be dubbed ‘a geneticist's nightmare’: It hinders the predictability of genome editing outcomes and limits our ability to link genotypes to phenotypes. Genetic studies in yeast and plants have suggested that the ability of ancient redundant duplicates to compensate for dosage perturbations resulting from a loss of function depends on the reprogramming of gene expression, a phenomenon known as active compensation. Starting from considerations on the stoichiometric constraints that drive the evolutionary stability of redundancy, this review aims to provide insights into the mechanisms of active compensation between duplicates that could be targeted for breaking paralog dependencies – the next frontier in plant functional studies.</p>\u0000 </div>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 4","pages":"1381-1389"},"PeriodicalIF":9.4,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41148514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信