Evolution Equations and Control Theory最新文献

筛选
英文 中文
Stability properties for a problem of light scattering in a dispersive metallic domain 色散金属域光散射问题的稳定性
IF 1.5 4区 数学
Evolution Equations and Control Theory Pub Date : 2022-01-01 DOI: 10.3934/eect.2022020
S. Nicaise, C. Scheid
{"title":"Stability properties for a problem of light scattering in a dispersive metallic domain","authors":"S. Nicaise, C. Scheid","doi":"10.3934/eect.2022020","DOIUrl":"https://doi.org/10.3934/eect.2022020","url":null,"abstract":"In this work, we study the well-posedness and some stability properties of a PDE system that models the propagation of light in a metallic domain with a hole. This model takes into account the dispersive properties of the metal. It consists of a linear coupling between Maxwell's equations and a wave type system. We prove that the problem is well posed for several types of boundary conditions. Furthermore, we show that it is polynomially stable and that the exponential stability is conditional on the exponential stability of the Maxwell system.","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"91 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76183014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A general decay result for the Cauchy problem of plate equations with memory 具有记忆板方程柯西问题的一般衰减结果
IF 1.5 4区 数学
Evolution Equations and Control Theory Pub Date : 2022-01-01 DOI: 10.3934/eect.2022026
S. Messaoudi, Ilyes Lacheheb
{"title":"A general decay result for the Cauchy problem of plate equations with memory","authors":"S. Messaoudi, Ilyes Lacheheb","doi":"10.3934/eect.2022026","DOIUrl":"https://doi.org/10.3934/eect.2022026","url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we investigate the general decay rate of the solutions for a class of plate equations with memory term in the whole space <inline-formula><tex-math id=\"M1\">begin{document}$ mathbb{R}^n $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M2\">begin{document}$ ngeq 1 $end{document}</tex-math></inline-formula>, given by</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> begin{document}$ begin{equation*} u_{tt}+Delta^2 u+ u+ int_0^t g(t-s)A u(s)ds = 0, end{equation*} $end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with <inline-formula><tex-math id=\"M3\">begin{document}$ A = Delta $end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M4\">begin{document}$ A = -Id $end{document}</tex-math></inline-formula>. We use the energy method in the Fourier space to establish several general decay results which improve many recent results in the literature. We also present two illustrative examples by the end.</p>","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"48 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87496543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the exact controllability for the Benney-Luke equation in a bounded domain 有界域上Benney-Luke方程的精确可控性
IF 1.5 4区 数学
Evolution Equations and Control Theory Pub Date : 2022-01-01 DOI: 10.3934/eect.2022052
Jose R. Quintero
{"title":"On the exact controllability for the Benney-Luke equation in a bounded domain","authors":"Jose R. Quintero","doi":"10.3934/eect.2022052","DOIUrl":"https://doi.org/10.3934/eect.2022052","url":null,"abstract":"","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"44 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72855362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical and computational decay results for a Bresse system with one infinite memory in the longitudinal displacement 具有无限记忆的Bresse系统在纵向位移中的理论和计算衰减结果
IF 1.5 4区 数学
Evolution Equations and Control Theory Pub Date : 2022-01-01 DOI: 10.3934/eect.2022027
M. Alahyane, M. Al‐Gharabli, Adel M. Al-Mahdi
{"title":"Theoretical and computational decay results for a Bresse system with one infinite memory in the longitudinal displacement","authors":"M. Alahyane, M. Al‐Gharabli, Adel M. Al-Mahdi","doi":"10.3934/eect.2022027","DOIUrl":"https://doi.org/10.3934/eect.2022027","url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we consider a one-dimensional linear Bresse system with only one infinite memory term acting in the third equation (longitudinal displacements). Under a general condition on the memory kernel (relaxation function), we establish a decay estimate of the energy of the system. Our decay result extends and improves some decay rates obtained in the literature such as the one in [<xref ref-type=\"bibr\" rid=\"b27\">27</xref>], [<xref ref-type=\"bibr\" rid=\"b4\">4</xref>], [<xref ref-type=\"bibr\" rid=\"b33\">33</xref>], [<xref ref-type=\"bibr\" rid=\"b58\">58</xref>] and [<xref ref-type=\"bibr\" rid=\"b34\">34</xref>]. The proof is based on the energy method together with convexity arguments. Numerical simulations are given to illustrate the theoretical decay result.</p>","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"88 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78301442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Heavy ball method regularized by Tikhonov term. Simultaneous convergence of values and trajectories 由吉洪诺夫项正则化的重球法。值和轨迹的同时收敛
IF 1.5 4区 数学
Evolution Equations and Control Theory Pub Date : 2022-01-01 DOI: 10.3934/eect.2022046
Akram Chahid Bagy, Z. Chbani, H. Riahi
{"title":"The Heavy ball method regularized by Tikhonov term. Simultaneous convergence of values and trajectories","authors":"Akram Chahid Bagy, Z. Chbani, H. Riahi","doi":"10.3934/eect.2022046","DOIUrl":"https://doi.org/10.3934/eect.2022046","url":null,"abstract":"<p style='text-indent:20px;'>Let <inline-formula><tex-math id=\"M1\">begin{document}$ f: {mathcal H} rightarrow mathbb{R} $end{document}</tex-math></inline-formula> be a convex differentiable function whose solution set <inline-formula><tex-math id=\"M2\">begin{document}$ {{rm{argmin}}}; f $end{document}</tex-math></inline-formula> is nonempty. To attain a solution of the problem <inline-formula><tex-math id=\"M3\">begin{document}$ min_{mathcal H}f $end{document}</tex-math></inline-formula>, we consider the second order dynamic system <inline-formula><tex-math id=\"M4\">begin{document}$ ;ddot{x}(t) + alpha , dot{x}(t) + beta (t) nabla f(x(t)) + c x(t) = 0 $end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M5\">begin{document}$ beta $end{document}</tex-math></inline-formula> is a positive function such that <inline-formula><tex-math id=\"M6\">begin{document}$ lim_{trightarrow +infty}beta(t) = +infty $end{document}</tex-math></inline-formula>. By imposing adequate hypothesis on first and second order derivatives of <inline-formula><tex-math id=\"M7\">begin{document}$ beta $end{document}</tex-math></inline-formula>, we simultaneously prove that the value of the objective function in a generated trajectory converges in order <inline-formula><tex-math id=\"M8\">begin{document}$ {mathcal O}big(frac{1}{beta(t)}big) $end{document}</tex-math></inline-formula> to the global minimum of the objective function, that the trajectory strongly converges to the minimum norm element of <inline-formula><tex-math id=\"M9\">begin{document}$ {{rm{argmin}}}; f $end{document}</tex-math></inline-formula> and that <inline-formula><tex-math id=\"M10\">begin{document}$ Vert dot{x}(t)Vert $end{document}</tex-math></inline-formula> converges to zero in order <inline-formula><tex-math id=\"M11\">begin{document}$ mathcal{O} big( sqrt{frac{dot{beta}(t)}{beta (t)}}+ e^{-mu t} big) $end{document}</tex-math></inline-formula> where <inline-formula><tex-math id=\"M12\">begin{document}$ mu<frac{alpha}2 $end{document}</tex-math></inline-formula>. We then present two choices of <inline-formula><tex-math id=\"M13\">begin{document}$ beta $end{document}</tex-math></inline-formula> to illustrate these results. On the basis of the Moreau regularization technique, we extend these results to non-smooth convex functions with extended real values.</p>","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"6 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87095812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Exact controllability of semilinear heat equations through a constructive approach 用建设性方法研究半线性热方程的精确可控性
IF 1.5 4区 数学
Evolution Equations and Control Theory Pub Date : 2022-01-01 DOI: 10.3934/eect.2022042
S. Ervedoza, Jérôme Lemoine, A. Münch
{"title":"Exact controllability of semilinear heat equations through a constructive approach","authors":"S. Ervedoza, Jérôme Lemoine, A. Münch","doi":"10.3934/eect.2022042","DOIUrl":"https://doi.org/10.3934/eect.2022042","url":null,"abstract":"<p style='text-indent:20px;'>The exact distributed controllability of the semilinear heat equation <inline-formula><tex-math id=\"M1\">begin{document}$ partial_{t}y-Delta y + f(y) = v , 1_{omega} $end{document}</tex-math></inline-formula> posed over multi-dimensional and bounded domains, assuming that <inline-formula><tex-math id=\"M2\">begin{document}$ f $end{document}</tex-math></inline-formula> is locally Lipschitz continuous and satisfies the growth condition <inline-formula><tex-math id=\"M3\">begin{document}$ limsup_{| r|to infty} | f(r)| /(| r| ln^{3/2}| r|)leq beta $end{document}</tex-math></inline-formula> for some <inline-formula><tex-math id=\"M4\">begin{document}$ beta $end{document}</tex-math></inline-formula> small enough has been obtained by Fernández-Cara and Zuazua in 2000. The proof based on a non constructive fixed point arguments makes use of precise estimates of the observability constant for a linearized heat equation. Under the same assumption, by introducing a different fixed point application, we present a different and somewhat simpler proof of the exact controllability, which is not based on the cost of observability of the heat equation with respect to potentials. Then, assuming that <inline-formula><tex-math id=\"M5\">begin{document}$ f $end{document}</tex-math></inline-formula> is locally Lipschitz continuous and satisfies the growth condition <inline-formula><tex-math id=\"M6\">begin{document}$ limsup_{| r|to infty} | f^prime(r)|/ln^{3/2}| r|leq beta $end{document}</tex-math></inline-formula> for some <inline-formula><tex-math id=\"M7\">begin{document}$ beta $end{document}</tex-math></inline-formula> small enough, we show that the above fixed point application is contracting yielding a constructive method to compute the controls for the semilinear equation. Numerical experiments illustrate the results.</p>","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"11 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80071459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Exponential stability and stabilization of fractional stochastic degenerate evolution equations in a Hilbert space: Subordination principle Hilbert空间中分数阶随机退化演化方程的指数稳定性和稳定性:从属原理
IF 1.5 4区 数学
Evolution Equations and Control Theory Pub Date : 2022-01-01 DOI: 10.3934/eect.2022008
Arzu Ahmadova, N. Mahmudov, J. Nieto
{"title":"Exponential stability and stabilization of fractional stochastic degenerate evolution equations in a Hilbert space: Subordination principle","authors":"Arzu Ahmadova, N. Mahmudov, J. Nieto","doi":"10.3934/eect.2022008","DOIUrl":"https://doi.org/10.3934/eect.2022008","url":null,"abstract":"In this paper, we obtain a closed-form representation of a mild solution to the fractional stochastic degenerate evolution equation in a Hilbert space using the subordination principle and semigroup theory. We study aforesaid abstract fractional stochastic Cauchy problem with nonlinear state-dependent terms and show that if the Sobolev type resolvent families describing the linear part of the model are exponentially stable, then the whole system retains this property under some Lipschitz continuity assumptions for nonlinearity. We also establish conditions for stabilizability and prove that the stochastic nonlinear fractional Cauchy problem is exponentially stabilizable when the stabilizer acts linearly on the control systems. Finally, we provide applications to show the validity of our theory.","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"89 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83857875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Exponential stabilization of the problem of transmission of wave equation with linear dynamical feedback control 线性动态反馈控制下波动方程传递问题的指数镇定
IF 1.5 4区 数学
Evolution Equations and Control Theory Pub Date : 2022-01-01 DOI: 10.3934/eect.2022001
Zhiling Guo, Shugen Chai
{"title":"Exponential stabilization of the problem of transmission of wave equation with linear dynamical feedback control","authors":"Zhiling Guo, Shugen Chai","doi":"10.3934/eect.2022001","DOIUrl":"https://doi.org/10.3934/eect.2022001","url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we address exponential stabilization of transmission problem of the wave equation with linear dynamical feedback control. Using the classical energy method and multiplier technique, we prove that the energy of system exponentially decays.</p>","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"18 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82415458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical analysis of an abstract model and its applications to structured populations (I) 抽象模型的数学分析及其在结构种群中的应用(I)
IF 1.5 4区 数学
Evolution Equations and Control Theory Pub Date : 2022-01-01 DOI: 10.3934/eect.2022021
M. Boulanouar
{"title":"Mathematical analysis of an abstract model and its applications to structured populations (I)","authors":"M. Boulanouar","doi":"10.3934/eect.2022021","DOIUrl":"https://doi.org/10.3934/eect.2022021","url":null,"abstract":"The first part of this works deals with an integro–differential operator with boundary condition related to the interior solution. We prove that the model is governed by a strongly continuous semigroup and we precise its growth inequality. In the second part of this works, we model the proliferation-quiescence phases through a system of first order equations. We also prove that the proliferation-quiescence model is governed by a strongly continuous semigroup and we precise its growth inequality. In the last part, we give some applications in Demography and Biology.","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"35 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76992902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of a linearized poromechanics model for incompressible and nearly incompressible materials 不可压缩和近似不可压缩材料的线性化孔隙力学模型分析
IF 1.5 4区 数学
Evolution Equations and Control Theory Pub Date : 2022-01-01 DOI: 10.3934/eect.2022053
Mathieu Barré, C. Grandmont, Philippe Moireau
{"title":"Analysis of a linearized poromechanics model for incompressible and nearly incompressible materials","authors":"Mathieu Barré, C. Grandmont, Philippe Moireau","doi":"10.3934/eect.2022053","DOIUrl":"https://doi.org/10.3934/eect.2022053","url":null,"abstract":"HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Analysis of a linearized poromechanics model for incompressible and nearly incompressible materials Mathieu Barré, Céline Grandmont, Philippe Moireau","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"59 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74377301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信