{"title":"抽象模型的数学分析及其在结构种群中的应用(I)","authors":"M. Boulanouar","doi":"10.3934/eect.2022021","DOIUrl":null,"url":null,"abstract":"The first part of this works deals with an integro–differential operator with boundary condition related to the interior solution. We prove that the model is governed by a strongly continuous semigroup and we precise its growth inequality. In the second part of this works, we model the proliferation-quiescence phases through a system of first order equations. We also prove that the proliferation-quiescence model is governed by a strongly continuous semigroup and we precise its growth inequality. In the last part, we give some applications in Demography and Biology.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical analysis of an abstract model and its applications to structured populations (I)\",\"authors\":\"M. Boulanouar\",\"doi\":\"10.3934/eect.2022021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first part of this works deals with an integro–differential operator with boundary condition related to the interior solution. We prove that the model is governed by a strongly continuous semigroup and we precise its growth inequality. In the second part of this works, we model the proliferation-quiescence phases through a system of first order equations. We also prove that the proliferation-quiescence model is governed by a strongly continuous semigroup and we precise its growth inequality. In the last part, we give some applications in Demography and Biology.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2022021\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2022021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mathematical analysis of an abstract model and its applications to structured populations (I)
The first part of this works deals with an integro–differential operator with boundary condition related to the interior solution. We prove that the model is governed by a strongly continuous semigroup and we precise its growth inequality. In the second part of this works, we model the proliferation-quiescence phases through a system of first order equations. We also prove that the proliferation-quiescence model is governed by a strongly continuous semigroup and we precise its growth inequality. In the last part, we give some applications in Demography and Biology.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.